The Space of Essential Matrices as a Riemannian Quotient Manifold
نویسندگان
چکیده
The essential matrix, which encodes the epipolar constraint between points in two projective views, is a cornerstone of modern computer vision. Previous works have proposed different characterizations of the space of essential matrices as a Riemannian manifold. However, they either do not consider the symmetric role played by the two views or do not fully take into account the geometric peculiarities of the epipolar constraint. We address these limitations with a characterization as a quotient manifold that can be easily interpreted in terms of camera poses. While our main focus is on theoretical aspects, we include applications to optimization problems in computer vision.
منابع مشابه
ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملA Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank
We present a homogeneous space geometry for the manifold of symmetric positive semidefinite matrices of fixed rank. The total space is the general linear group endowed with its natural rightinvariant metric, and the metric on the homogeneous space is chosen such that the quotient space is the image of a Riemannian submersion from the total space. As a result, we obtain complete geodesics that a...
متن کاملReconstructing Karcher Means of Shapes on a Riemannian Manifold of Metrics and Curvatures
In a recent paper [1], the authors suggest a novel Riemannian framework for comparing shapes. In this framework, a simple closed surface is represented by a field of metric tensors and curvatures. A product Riemannian metric is developed based on the L norm on symmetric positive definite matrices and scalar fields. Taken as a quotient space under the group of volume-preserving diffeomorphisms, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 10 شماره
صفحات -
تاریخ انتشار 2017