Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells.
نویسندگان
چکیده
The role of cytosolic calcium oscillation has long been recognized in the regulation of cellular and molecular interactions. Information embedded in calcium oscillation can provide molecular cues for cell behavior such as cell differentiation. Although calcium dynamics are versatile and likely to depend on the cell type, the calcium dynamics in human mesenchymal stem cells (hMSCs) and its role in differentiation are yet to be fully elucidated. In the present study we characterized the calcium oscillation profiles in hMSCs before and after subjecting the cells to the osteoinductive factors. Our findings indicate that the calcium spikes decreased rapidly with osteodifferentiation to a level observed in terminally differentiated human osteoblasts. In addition, the calcium oscillations appear to serve as a bidirectional signal during hMSC differentiation. While an altered calcium oscillation pattern may be an indicator for hMSC differentiation, it is also likely to be involved in directing hMSC differentiation. Treatment of hMSCs with a noninvasive electrical stimulation, for example, not only altered the calcium oscillations but also facilitated osteodifferentiation. Regulation of calcium oscillation by external physical stimulation could amplify hMSC differentiation into a tissue-specific lineage and may offer an alternate biotechnology to harness the unique properties of stem cells.
منابع مشابه
Gene manipulation of human adipose-derived mesenchymal stem cells by miR-34a
Background: Safe and effective gene therapy is considered as one of the therapeutic goals in many diseases. Due to the important role of stem cells in cell therapy, this study aimed to produce human adipose-derived mesenchymal stem cells (hASCs) using the miR-34a overexpression. Materials and methods: The hsa-mir-34a precursor sequence was cloned into the PCDH lentiviral vector. The recombinant...
متن کاملBi-Functionalization of a Calcium Phosphate-Coated Titanium Surface with Slow-Release Simvastatin and Metronidazole to Provide Antibacterial Activities and Pro-Osteodifferentiation Capabilities
Coating the surface of titanium implants or other bone graft substitute materials with calcium phosphate (Ca-P) crystals is an effective way to enhance the osteoconduction of the implants. Ca-P coating alone cannot confer pro-osteodifferentiation and antibacterial capabilities on implants; however, it can serve as a carrier for biological agents which could improve the performance of implants a...
متن کاملطراحی و ساخت سازه ژنی نوترکیب بیان کننده ژن حفاظت کننده سلولی
Background : Genetic manipulation is an effective strategy to protect cells against environmental damages and enhance their capabilities for therapeutic usage. In order to avoid unwanted side effects, such as cancers, the expression of genes should be temporary increased. The aim of this study was to clone and temporary increased expression of a cell protective gene, Metallothionein 1 (MT1) in ...
متن کاملEstablishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor
Objective(s): Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. Materials and Methods: We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, ...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2007