Hamilton-Pontryagin variational integrators

نویسنده

  • Tomasz M. Tyranowski
چکیده

In this paper we discuss the applications of the Hamilton-Pontryagin variational principle for designing time-adaptive variational integrators. First, we review the multisymplectic formalism of field theories. Next, we review the Hamilton-Pontryagin principle and show how it can be used to handle time reparametrizations in a very natural way. Finally, we derive a time-adaptive variational integrator for a mechanical system and present the results of our numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton-Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties

In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge– Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces ...

متن کامل

Discrete Dirac Structures and Variational Discrete Dirac Mechanics

We construct discrete analogues of Dirac structures by considering the geometry of symplectic maps and their associated generating functions, in a manner analogous to the construction of continuous Dirac structures in terms of the geometry of symplectic vector fields and their associated Hamiltonians. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian a...

متن کامل

Hamilton-Pontryagin Integrators on Lie Groups Part I: Introduction & Structure-Preserving Properties

In this paper structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton-Pontryagin variational principle. From this principle one can derive a novel class of variational partitioned Runge-Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer-Verlet integrators from flat spaces to ...

متن کامل

Stochastic Variational Partitioned Runge-Kutta Integrators for Constrained Systems

Stochastic variational integrators for constrained, stochastic mechanical systems are developed in this paper. The main results of the paper are twofold: an equivalence is established between a stochastic Hamilton-Pontryagin (HP) principle in generalized coordinates and constrained coordinates via Lagrange multipliers, and variational partitioned Runge-Kutta (VPRK) integrators are extended to t...

متن کامل

ar X iv : 0 81 0 . 07 40 v 1 [ m at h . SG ] 4 O ct 2 00 8 DISCRETE DIRAC STRUCTURES AND VARIATIONAL DISCRETE DIRAC MECHANICS

We construct discrete analogues of Dirac structures by considering the geometry of symplectic maps and their associated generating functions, in a manner analogous to the construction of continuous Dirac structures in terms of the geometry of symplectic vector fields and their associated Hamiltonians. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009