D 3 . 3 . Fungal gene expression during ectomycorrhiza formation
نویسنده
چکیده
Ectomycorrhiza development involves the differentiation of structurally specialized fungal tissues (e.g., mantle and Hartig net) and an interface between symbionts. Polypeptides presenting a preferential, up-, or down-regulated synthesis have been characterized in several developing ectomycorrhizal associations. Their spatial and temporal expressions have been characterized by cell fractionation, two-dimensional polyacrylamide gel electrophoresis. and immunochemical assays in the Eucalyptus spp. Pisolithus tinctorius mycorrhizas. These studies have emphasized the importance of fungal cell wall polypeptides during the early stages of the ectomycorrhizal interaction. The increased synthesis of 30to 32-kDa acidic polypeptides, together with the decreased accumulation of a prominent 95-kDa mannoprotein provided evidence for major alterations of Pisolithus tinctorius cell walls during mycorrhiza formation. Differential cDNA library screening and shotgun cDNA sequencing were used to clone symbiosis-regulated fungal genes. Several abundant transcripts showed a significant amino acid sequence similarity to a family of secreted morphogenetic fungal proteins, the so-called hydrophobins. In P. tinctorius, the content of hydrophobin transcripts is high in aerial hyphae and during the ectomycorrhizal sheath formation. Alteration of cell walls and the extracellular matrix is therefore a key event in the ectomycorrhiza development. An understanding of the molecular mechanisms that underlies the temporal and spatial control of genes and proteins involved in the development of the symbiotic interface is now within reach, as more sophisticated techniques of molecular and genetic analysis are applied to the mycorrhizal interactions.
منابع مشابه
Biosynthesis and Secretion of Indole-3-Acetic Acid and Its Morphological Effects on Tricholoma vaccinum-Spruce Ectomycorrhiza.
Fungus-derived indole-3-acetic acid (IAA), which is involved in development of ectomycorrhiza, affects both partners, i.e., the tree and the fungus. The biosynthesis pathway, excretion from fungal hyphae, the induction of branching in fungal cultures, and enhanced Hartig net formation in mycorrhiza were shown. Gene expression studies, incorporation of labeled compounds into IAA, heterologous ex...
متن کاملChanges in protein biosynthesis during the differentiation of Pisolithus - Eucalyptus grandis ectomycorrhiza
Protein biosynthesis in Pisolithus Eucalyptus grandis ectomycorrhiza was related to the stage of ectomycorrhizal development using two-dimensional polyacrylamide gel electrophoresis of proteins labelled by in vivo incorporation of 35S radiolabelled amino acids. Nineteen-day-old seedlings were radiolabelled and the primary root was divided into I-cm segments. With increasing distance from the ti...
متن کاملSugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis.
Simple, readily utilizable carbohydrates, necessary for growth and maintenance of large numbers of microbes are rare in forest soils. Among other types of mutualistic interactions, the formation of ectomycorrhizas, a symbiosis between tree roots and certain soil fungi, is a way to overcome nutrient and carbohydrate limitations typical for many forest ecosystems. Ectomycorrhiza formation is typi...
متن کاملIdentification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis.
The development of ectomycorrhizal symbiosis leads to drastic changes in gene expression in both partners. However, little is known about the spatial regulation of symbiosis-regulated genes. Using cDNA array profiling, we compared the levels of expression of fungal genes corresponding to approximately 1,200 expressed sequenced tags in the ectomycorrhizal root tips (ECM) and the connected extrar...
متن کاملRecovery of ectomycorrhiza after 'nitrogen saturation' of a conifer forest.
Trees reduce their carbon (C) allocation to roots and mycorrhizal fungi in response to high nitrogen (N) additions, which should reduce the N retention capacity of forests. The time needed for recovery of mycorrhizas after termination of N loading remains unknown. Here, we report the long-term impact of N loading and the recovery of ectomycorrhiza after high N loading on a Pinus sylvestris fore...
متن کامل