Assessing Computational Steps for CLIP-Seq Data Analysis

نویسندگان

  • Qi Liu
  • Xue Zhong
  • Blair B. Madison
  • Anil K. Rustgi
  • Yu Shyr
چکیده

RNA-binding protein (RBP) is a key player in regulating gene expression at the posttranscriptional level. CLIP-Seq, with the ability to provide a genome-wide map of protein-RNA interactions, has been increasingly used to decipher RBP-mediated posttranscriptional regulation. Generating highly reliable binding sites from CLIP-Seq requires not only stringent library preparation but also considerable computational efforts. Here we presented a first systematic evaluation of major computational steps for identifying RBP binding sites from CLIP-Seq data, including preprocessing, the choice of control samples, peak normalization, and motif discovery. We found that avoiding PCR amplification artifacts, normalizing to input RNA or mRNAseq, and defining the background model from control samples can reduce the bias introduced by RNA abundance and improve the quality of detected binding sites. Our findings can serve as a general guideline for CLIP experiments design and the comprehensive analysis of CLIP-Seq data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational analysis of CLIP-seq data.

CLIP-seq experiments are currently the most important means for determining the binding sites of RNA binding proteins on a genome-wide level. The computational analysis can be divided into three steps. In the first pre-processing stage, raw reads have to be trimmed and mapped to the genome. This step has to be specifically adapted for each CLIP-seq protocol. The next step is peak calling, which...

متن کامل

Cseq-Simulator: A Data Simulator for CLIP-Seq Experiments

CLIP-Seq protocols such as PAR-CLIP, HITS-CLIP or iCLIP allow a genome-wide analysis of protein-RNA interactions. For the processing of the resulting short read data, various tools are utilized. Some of these tools were specifically developed for CLIP-Seq data, whereas others were designed for the analysis of RNA-Seq data. To this date, however, it has not been assessed which of the available t...

متن کامل

CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome

Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation-maximization algor...

متن کامل

Computational Methods for CLIP-seq Data Processing

RNA-binding proteins (RBPs) are at the core of post-transcriptional regulation and thus of gene expression control at the RNA level. One of the principal challenges in the field of gene expression regulation is to understand RBPs mechanism of action. As a result of recent evolution of experimental techniques, it is now possible to obtain the RNA regions recognized by RBPs on a transcriptome-wid...

متن کامل

starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleava...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015