Structure Theorem for Functionals in the Space Sω1, ω2′
نویسندگان
چکیده
We introduce the space Sω1,ω2 of all C ∞ functions φ such that sup |α|≤m‖e1∂αφ‖∞ and sup |α|≤m‖e2∂αφ̂‖∞ are finite for all k ∈ N0, α ∈ Nn0 , where ω1 and ω2 are two weights satisfying the classical Beurling conditions. Moreover, we give a topological characterization of the space Sω1,ω2 without conditions on the derivatives. For functionals in the dual space S ′ ω1,ω2 , we prove a structure theorem by using the classical Riesz representation thoerem.
منابع مشابه
Equivalence of K-functionals and modulus of smoothness for fourier transform
In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.
متن کاملAlmost multiplicative linear functionals and approximate spectrum
We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...
متن کاملA Representation for Characteristic Functionals of Stable Random Measures with Values in Sazonov Spaces
متن کامل
A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملPositive Solutions for System of Nonlinear Fractional Differential Equations in Two Dimensions with Delay
and Applied Analysis 3 Definition 2.2. For f, g ∈ E the order interval 〈f, g〉 is defined as 17 〈 f, g 〉 { h ∈ E : f ≤ h ≤ g. 2.1 Definition 2.3. A subset E ⊂ Π is called order bounded if E is contained in some order interval. Definition 2.4. A coneK is called normal if there exists a positive constant μ such that f, g ∈ V and θ ≺ f ≺ g implies that ‖f‖ ≤ μ‖g‖. We state the two fixed point resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008