Adjuvant Potential of Selegiline in Attenuating Organ Dysfunction in Septic Rats with Peritonitis

نویسندگان

  • Cheng-Ming Tsao
  • Jhih-Gang Jhang
  • Shiu-Jen Chen
  • Shuk-Man Ka
  • Tao-Cheng Wu
  • Wen-Jinn Liaw
  • Hsieh-Chou Huang
  • Chin-Chen Wu
  • Cordula M. Stover
چکیده

Selegiline, an anti-Parkinson drug, has antioxidant and anti-apoptotic effects. To explore the effect of selegiline on sepsis, we used a clinically relevant animal model of polymicrobial sepsis. Cecal ligation and puncture (CLP) or sham operation was performed in male rats under anesthesia. Three hours after surgery, animals were randomized to receive intravenously selegiline (3 mg/kg) or an equivalent volume of saline. The administration of CLP rats with selegiline (i) increased arterial blood pressure and vascular responsiveness to norepinephrine, (ii) reduced plasma liver and kidney dysfunction, (iii) attenuated metabolic acidosis, (iv) decreased neutrophil infiltration in liver and lung, and (v) improved survival rate (from 44% to 65%), compared to those in the CLP alone rats. The CLP-induced increases of plasma interleukin-6, organ superoxide levels, and liver inducible nitric oxide synthase and caspase-3 expressions were ameliorated by selegiline treatment. In addition, the histological changes in liver and lung were significantly attenuated in the selegiline -treated CLP group compared to those in the CLP group. The improvement of organ dysfunction and survival through reducing inflammation, oxidative stress and apoptosis in peritonitis-induced sepsis by selegiline has potential as an adjuvant agent for critical ill.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of high-volume hemofiltration on lungoxygenation in patients with septic shock

Introduction High-volume hemofiltration (HVHF) is technically possible in severe acute disease abdominal cavity patients complicated with multiple organ dysfunction syndrome (MODS). Continuous HVHF is expected to become a beneficial adjunct therapy for acute pancreatitis and peritonitis complicated with MODS. In this study, we aimed to explore the effects of fluid resuscitation and HVHF on alve...

متن کامل

Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure.

Although sepsis is the major cause of mortality and morbidity in the critically ill, precise mechanism(s) causing multiorgan dysfunction remain unclear. Findings of impaired oxygen utilization in septic patients and animals implicate nitric oxide-mediated inhibition of the mitochondrial respiratory chain. We recently reported a relationship between skeletal muscle mitochondrial dysfunction, cli...

متن کامل

Levosimendan attenuates multiple organ injury and improves survival in peritonitis-induced septic shock: studies in a rat model

INTRODUCTION The aim of this study was to investigate the effects of levosimendan on rodent septic shock induced by cecal ligation and puncture (CLP). METHODS Three hours after peritonitis-induced sepsis, male Wistar rats were randomly assigned to receive an intravenous infusion of levosimendan (1.2 μg/kg/min for 10 min and then 0.3 μg/kg/min for 6 h) or an equivalent volume of saline and veh...

متن کامل

A1 adenosine receptor knockout mice exhibit increased mortality, renal dysfunction, and hepatic injury in murine septic peritonitis.

Sepsis is a leading cause of multiorgan dysfunction and death in hospitalized patients. Dysregulated inflammatory processes and apoptosis contribute to the pathogenesis of sepsis-induced organ dysfunction and death. A(1) adenosine receptor (A(1)AR) activation reduces inflammation and apoptosis after ischemia-reperfusion injury. Therefore, we questioned whether A(1)AR-mediated reduction of infla...

متن کامل

Cutting edge: Divergent cell-specific functions of MyD88 for inflammatory responses and organ injury in septic peritonitis.

Although global MyD88 deficiency attenuates lethal inflammation in sepsis, cell-specific functions of MyD88 remain largely unknown. Using mice with selective expression of MyD88 in myeloid cells (Myd88(MYEL)), we show that, during polymicrobial septic peritonitis, both myeloid and nonmyeloid cells contribute to systemic inflammation, whereas myeloid cell MyD88 was sufficient to fully establish ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014