Reducible cationic lipids for gene transfer.

نویسندگان

  • B Wetzer
  • G Byk
  • M Frederic
  • M Airiau
  • F Blanche
  • B Pitard
  • D Scherman
چکیده

One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزیابی و مقایسه خواص فیزیکوشیمیایی، سمیت سلولی و توانایی بارگذاری miRNA درلیپوزوم‌‌های کاتیونی متفاوت به منظور کاربرد در ژن‌درمانی

Introduction: In the present study, various formulations of cationic liposomes were designed and prepared using different cationic lipids. It was performed to assess the physicochemical properties, miRNA loading ability and cellular toxicity rates of liposomes in order to use in gene therapy. Methods: Different cationic liposome formulations (F1-F4) containing various cationic lipids, DOTAP, D...

متن کامل

The Effect of Linear PEI on Characteristics and Transfection Efficiency of PEI-Based Cationic Nanoliposomes

The development of efficient and safe carrier system to transfer DNA into cells is essential in non-viral gene therapy. The aim of the present study was to evaluate the effect of linear polyetheneimine (lPEI) (2500 Da) on the physicochemical and biological properties of lipopolyplexes constructed from liposomes and lPEI. Materials and Methods Different lipopolymers were synthesized from lPEI ...

متن کامل

Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synt...

متن کامل

Lipoplex morphologies and their influences on transfection efficiency in gene delivery.

Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and ...

متن کامل

Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery.

Cationic lipid-coated magnetic nanoparticles (MPs) associated with transferrin were evaluated as gene transfer vectors in the presence of a static magnetic field. MPs were prepared by chemical precipitation and were surface-coated with cationic lipids, composed of DDAB/soy PC (60:40 mole/mole). These cationic MPs were then combined with polyethylenimine (PEI) condensed plasmid DNA, followed by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 356 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001