The Making of a 3D-Printed, Cable-Driven, Single-Model, Lightweight Humanoid Robotic Hand
نویسندگان
چکیده
Dexterity robotic hands can (Cummings, 1996) greatly enhance the functionality of humanoid robots, but the making of such hands with not only human-like appearance but also the capability of performing the natural movement of social robots is a challenging problem. The first challenge is to create the hand’s articulated structure and the second challenge is to actuate it to move like a human hand. A robotic hand for humanoid robot should look and behave human like. At the same time, it also needs to be light and cheap for widely used purposes. We start with studying the biomechanical features of a human hand and propose a simplified mechanical model of robotic hands, which can achieve the important local motions of the hand. Then, we use 3D modeling techniques to create a single interlocked hand model that integrates pin and ball joints to our hand model. Compared to other robotic hands, our design saves the time required for assembling and adjusting, which makes our robotic hand ready-to-use right after the 3D printing is completed. Finally, the actuation of the hand is realized by cables and motors. Based on this approach, we have designed a cost-effective, 3D printable, compact, and lightweight robotic hand. Our robotic hand weighs 150 g, has 15 joints, which are similar to a real human hand, and 6 Degree of Freedom (DOFs). It is actuated by only six small size actuators. The wrist connecting part is also integrated into the hand model and could be customized for different robots such as Nadine robot (Magnenat Thalmann et al., 2017). The compact servo bed can be hidden inside the Nadine robot’s sleeve and the whole robotic hand platform will not cause extra load to her arm as the total weight (150 g robotic hand and 162 g artificial skin) is almost the same as her previous unarticulated robotic hand which is 348 g. The paper also shows our test results with and without silicon artificial hand skin, and on Nadine robot.
منابع مشابه
Low Cost Dexterous Teleoperation Humanoid Robotic Hand with Wearable Remote Controller
Humanoid robotic mechanisms are widely utilized to improve the efficiency and speed of industrial applications. The field is improving with the current tendency towards custom 3D printing and advancements in wearable technology. A method and an implementation to replicate the human finger movements in a vertical plane, using a robotic hand is presented in this paper. A wearable remote controlle...
متن کاملDevelopment of an Omnidirectional Walking Engine for Full-sized Lightweight Humanoid Robots
In this paper, we propose and demonstrate an omnidirectional walking engine that achieves stable walking using feedback from an inertial measurement unit (IMU). The 3D linear inverted pendulum model (3D-LIPM) is used as a simplified model of the robot, the zero moment point (ZMP) criterion is used as the stability criterion, and only the feedback from the IMU is utilized for stabilization. The ...
متن کاملA Child-sized 3D Printed Open-Source Robot for Research
The use of standard robotic platforms can accelerate research and lower the entry barrier for new research groups. There exist many affordable humanoid standard platforms in the lower size ranges of up to 60 cm, but larger humanoid robots quickly become less affordable and more difficult to operate, maintain and modify. The igus Humanoid Open Platform is a new and affordable, fully open-source ...
متن کاملInterval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملDual Space Control of a Deployable Cable Driven Robot: Wave Based Approach
Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Front. Robotics and AI
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017