Biophysical optimality of the golden angle in phyllotaxis

نویسنده

  • Takuya Okabe
چکیده

Plant leaves are arranged around a stem axis in a regular pattern characterized by common fractions, a phenomenon known as phyllotaxis or phyllotaxy. As plants grow, these fractions often transition according to simple rules related to Fibonacci sequences. This mathematical regularity originates from leaf primordia at the shoot tip (shoot apical meristem), which successively arise at fixed intervals of a divergence angle, typically the golden angle of 137.5°. Algebraic and numerical interpretations have been proposed to explain the golden angle observed in phyllotaxis. However, it remains unknown whether phyllotaxis has adaptive value, even though two centuries have passed since the phenomenon was discovered. Here, I propose a new adaptive mechanism explaining the presence of the golden angle. This angle is the optimal solution to minimize the energy cost of phyllotaxis transition. This model accounts for not only the high precision of the golden angle but also the occurrences of other angles observed in nature. The model also effectively explains the observed diversity of rational and irrational numbers in phyllotaxis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiment-based models of phyllotaxis

Phyllotaxis, the regular arrangement of leaves or flowers around a plant stem, is an example of developmental pattern formation and organogenesis. Phyllotaxis is characterized by the divergence angles between the organs, the most common angle being 137.5°, the golden angle. Models of phyllotaxis must explain its de novo establishment in the radially symmetric embryo, the stable maintenance of t...

متن کامل

Analyzing perturbations in phyllotaxis of Arabidopsis thaliana

Vascular plants produce new organs at the tip of the stem in a very organized fashion. This patterning process occurs in small groups of stem cells, the so-called shoot apical meristems (SAM), and generates regular patterns called phyllotaxis. The phyllotaxis of the model plant Arabidopsis thaliana follows a Fibonacci spiral, the most frequent phyllotactic pattern found in nature. In this phyll...

متن کامل

Phyllotaxis: In Search of the Golden Angle

How are the regular patterns of organs established along a plant stem and how are the transitions between different patterns regulated? Now genes of the PLETHORA family have been shown to modulate these transitions by fine-tuning the mechanisms of polar transport of auxin, a key effector of organogenesis.

متن کامل

Natural quasy-periodic binary structure with focusing property in near field diffraction pattern.

A naturally-inspired phase-only diffractive optical element with a circular symmetry given by a quasi-periodic structure of the phyllotaxis type is presented in this paper. It is generated starting with the characteristic parametric equations which are optimal for the golden angle interval. For some ideal geometrical parameters, the diffracted intensity distribution in near-field has a central ...

متن کامل

Noise and Robustness in Phyllotaxis

A striking feature of vascular plants is the regular arrangement of lateral organs on the stem, known as phyllotaxis. The most common phyllotactic patterns can be described using spirals, numbers from the Fibonacci sequence and the golden angle. This rich mathematical structure, along with the experimental reproduction of phyllotactic spirals in physical systems, has led to a view of phyllotaxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015