Advanced System Identification for High-Rise Building Using Shear-Bending Model
نویسندگان
چکیده
In order to identify physical model parameters of a high-rise building, a new story stiffness identification method is presented based on a shear-bending model and the identification function. Although a shear building model may be the simplest conventional model for representing tall buildings, the system identification (SI) method using that model is not necessarily appropriate. This is because the influence of bending deformation is predominant in such high-rise buildings. For this reason, a shear-bending model is used where the shear and bending stiffnesses are unknown. In the previous researches using the shear-bending model, it was difficult to identify the bending stiffnesses stably and reliably. In this paper, to overcome such instability of bending stiffness identification of the shear-bending model, a new SI algorithm using both the shear model and the shearbending model is presented. The proposed SI algorithm is based on the observation that the fundamental-mode shape of the identified shear model is similar to that of the shear-bending model identified in the previous SI method. In order to verify the advanced SI method, two different 20-story building models are investigated in the numerical simulations. From the results of the simulations, both the shear and bending stiffnesses of the shear-bending model are identified reliably and stably in the proposed SI method.
منابع مشابه
Modal–Physical Hybrid System Identification of High-rise Building via Subspace and Inverse-Mode Methods
A system identification (SI) problem of high-rise buildings is investigated under restricted data environments. The shear and bending stiffnesses of a shear-bending model (SB model) representing the high-rise buildings are identified via the smart combination of the subspace and inverse-mode methods. Since the shear and bending stiffnesses of the SB model can be identified in the inverse-mode m...
متن کاملStiffness Identification of High-Rise Buildings Based on Statistical Model-Updating Approach
A system identification problem is investigated for high-rise buildings to identify the story stiffnesses of a shear-bending model (SB model). In the previously proposed stiffness identification method due to the present authors, the shear and bending stiffnesses of the SB model were identified by means of the subspace and inverse-mode methods. The lowest mode of horizontal displacements and fl...
متن کاملSiesmic Assessment og Ductility and Strength Capacities of Low-Rise R. C. Buildings
This paper presents a methodology for the assessment of ductility and strength capacities in low-rise buildings. This method utilizes the characteristics of force-displacement for the lowest story level or considers the weakest story in any given low-rise building for its primary analysis. Calculations are based on two levels of earthquake motions, namely strong earthquakes (PGA=0.3 g), and ver...
متن کاملSiesmic Assessment og Ductility and Strength Capacities of Low-Rise R. C. Buildings
This paper presents a methodology for the assessment of ductility and strength capacities in low-rise buildings. This method utilizes the characteristics of force-displacement for the lowest story level or considers the weakest story in any given low-rise building for its primary analysis. Calculations are based on two levels of earthquake motions, namely strong earthquakes (PGA=0.3 g), and ver...
متن کاملTorsion Analysis of High-Rise Buildings using Quadrilateral Panel Elements with Drilling D.O.F.s
Generally, the finite element method is a powerful procedure for analysis of tall buildings. Yet, it should be noted that there are some problems in the application of many finite elements to the analysis of tall building structures. The presence of artificial flexure and parasitic shear effects in many lower order plane stress and membrane elements, cause the numerical procedure to converge in...
متن کامل