Homotopy algebras and the inverse of the normalization functor
نویسنده
چکیده
In this paper, we investigate multiplicative properties of the classical Dold–Kan correspondence. The inverse of the normalization functor maps commutative differential graded algebras to E∞algebras. We prove that it in fact sends algebras over arbitrary differential graded E∞-operads to E∞-algebras in simplicial modules and is part of a Quillen adjunction. More generally, this inverse maps homotopy algebras to weak homotopy algebras. We prove the corresponding dual results for algebras under the conormalization, and for coalgebra structures under the normalization resp. the inverse of the conormalization. © 2005 Elsevier B.V. All rights reserved. MSC: Primary 18D50; 18G55; secondary 55U15; 13D03
منابع مشابه
Algebraization of E∞ Ring Spectra
For a commutative ring k, the homotopy category of commutative Hk-algebras (strictly unital E∞ ring spectra under the Eilenberg-Mac Lane spectrum Hk) is equivalent to the homotopy category of E∞ differential graded k-algebras. The functor from topology to algebra is a CW approximation and cellular chain functor; the inverse equivalence is constructed by Brown’s representability theorem.
متن کاملCosimplicial versus Dg-rings: a Version of the Dold-kan Correspondence
The (dual) Dold-Kan correspondence says that there is an equivalence of categories K : Ch → Ab between nonnegatively graded cochain complexes and cosimplicial abelian groups, which is inverse to the normalization functor. We show that the restriction of K to DG-rings can be equipped with an associative product and that the resulting functor DGR → Rings, although not itself an equivalence, does ...
متن کاملOn categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملFunctors Induced by Cauchy Extension of C$^ast$-algebras
In this paper, we give three functors $mathfrak{P}$, $[cdot]_K$ and $mathfrak{F}$ on the category of C$^ast$-algebras. The functor $mathfrak{P}$ assigns to each C$^ast$-algebra $mathcal{A}$ a pre-C$^ast$-algebra $mathfrak{P}(mathcal{A})$ with completion $[mathcal{A}]_K$. The functor $[cdot]_K$ assigns to each C$^ast$-algebra $mathcal{A}$ the Cauchy extension $[mathcal{A}]_K$ of $mathcal{A}$ by ...
متن کاملCochains and Homotopy Type
Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E∞ algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E∞ algebras is faithful but not full.
متن کامل