On the Quasi-derivation Relation for Multiple Zeta Values
نویسنده
چکیده
Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relation for multiple zeta values. The goal of the present paper is to present a proof of this conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. In addition, some algebraic aspects of the quasi-derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a Hopf algebra developed by Connes and Moscovici, will be presented.
منابع مشابه
On an extension of the derivation relation for multiple zeta values
In this paper, we propose a conjectural generalization of the derivation relation for multiple zeta values. This extension was inspired by works of Alain Connes and Henri Moscovici on a certain Hopf algebra of transverse geometry [1], [2], and is thought of as a first attempt to materialize the suggestion given at the end of Section 7 in [4]. The multiple zeta value (MZV) is a real number defin...
متن کاملOn Extended Derivation Relations for Multiple Zeta Values
Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relations for multiple zeta values. The aim of this paper is to give a proof of the conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. Also we will give some algebraic aspects of the extended derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a Hop...
متن کامل6 F eb 2 00 4 MULTIPLE q - ZETA VALUES
We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...
متن کاملMultiple q-zeta values
We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...
متن کاملOn some relations for multiple L-values
In this talk, I survey several Q-linear relations for multiple L-values of Arakawa-Kaneko type. T. Arakawa and M. Kaneko proved in 2004 the so-called derivation relation, which is proved as a corollary of the regularized double shuffle relation. Kaneko firstly formulated an extension of the derivation relation by modeling a Hopf algebra introduced by A. Connes and H. Moscovici. G. Kawashima and...
متن کامل