On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-DCM3 versus TNT.

نویسندگان

  • Pablo A Goloboff
  • Diego Pol
چکیده

Roshan et al. recently described a "divide-and-conquer" technique for parsimony analysis of large data sets, Rec-I-DCM3, and stated that it compares very favorably to results using the program TNT. Their technique is based on selecting subsets of taxa to create reduced data sets or subproblems, finding most-parsimonious trees for each reduced data set, recombining all parts together, and then performing global TBR swapping on the combined tree. Here, we contrast this approach to sectorial searches, a divide-and-conquer algorithm implemented in TNT. This algorithm also uses a guide tree to create subproblems, with the first-pass state sets of the nodes that join the selected sectors with the rest of the topology; this allows exact length calculations for the entire topology (that is, any solution N steps shorter than the original, for the reduced subproblem, must also be N steps shorter for the entire topology). We show here that, for sectors of similar size analyzed with the same search algorithms, subdividing data sets with sectorial searches produces better results than subdividing with Rec-I-DCM3. Roshan et al.'s claim that Rec-I-DCM3 outperforms the techniques in TNT was caused by a poor experimental design and algorithmic settings used for the runs in TNT. In particular, for finding trees at or very close to the minimum known length of the analyzed data sets, TNT clearly outperforms Rec-I-DCM3. Finally, we show that the performance of Rec-I-DCM3 is bound by the efficiency of TBR implementation for the complete data set, as this method behaves (after some number of iterations) as a technique for cyclic perturbations and improvements more than as a divide-and-conquer strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Divide-and-Conquer Phylogeny Reconstruction by Maximum Likelihood

Phylogenetic trees are important in biology since their applications range from determining protein function to understanding the evolution of species. Maximum Likelihood (ML) is a popular optimization criterion in phylogenetics. However, inference of phylogenies with ML is NP-hard. Recursive-Iterative-DCM3 (Rec-I-DCM3) is a divideand-conquer framework that divides a dataset into smaller subset...

متن کامل

Rec-DCM-Eigen: Reconstructing a Less Parsimonious but More Accurate Tree in Shorter Time

Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subg...

متن کامل

Reconstruction of large phylogenetic trees: A parallel approach

Reconstruction of phylogenetic trees for very large datasets is a known example of a computationally hard problem. In this paper, we present a parallel computing model for the widely used Multiple Instruction Multiple Data (MIMD) architecture. Following the idea of divide-and-conquer, our model adapts the recursive-DCM3 decomposition method [Roshan, U., Moret, B.M.E., Williams, T.L., Warnow, T,...

متن کامل

Rec-I-DCM3: A Fast Algorithmic Technique for Reconstructing Large Phylogenetic Trees

Phylogenetic trees are commonly reconstructed based on hard optimization problems such as maximum parsimony (MP) and maximum likelihood (ML). Conventional MP heuristics for producing phylogenetic trees produce good solutions within reasonable time on small datasets (up to a few thousand sequences), while ML heuristics are limited to smaller datasets (up to a few hundred sequences). However, sin...

متن کامل

Phylogenetic Analysis of Large Sequence Data Sets

Phylogenetic analysis is an integral part of biological research. As the number of sequenced genomes increases, available data sets are growing in number and size. Several algorithms have been proposed to handle these larger data sets. A family of algorithms known as disc covering methods (DCMs), have been selected by the NSF funded CIPRes project to boost the performance of existing phylogenet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Systematic biology

دوره 56 3  شماره 

صفحات  -

تاریخ انتشار 2007