Presynaptic alpha-adrenoceptors in median preoptic nucleus modulate inhibitory neurotransmission from subfornical organ and organum vasculosum lamina terminalis.

نویسندگان

  • Miloslav Kolaj
  • Leo P Renaud
چکیده

The median preoptic nucleus (MnPO) in the lamina terminalis receives a prominent catecholaminergic innervation from the dorsomedial and ventrolateral medulla. The present investigation used whole cell patch-clamp recordings in rat brain slice preparations to evaluate the hypothesis that presynaptic adrenoceptors could modulate GABAergic inputs to MnPO neurons. Bath applications of norepinephrine (NE; 20-50 microM) induced a prolonged and reversible suppression of inhibitory postsynaptic currents (IPSCs) and reduced paired-pulse depression evoked by stimulation in the subfornical organ and organum vasculosum lamina terminalis. These events were not correlated with any observed changes in membrane conductance arising from NE activity at postsynaptic alpha(1)- or alpha(2)-adrenoceptors. Consistent with a role for presynaptic alpha(2)-adrenoceptors, responses were selectively mimicked by an alpha(2)-adrenoceptor agonist (UK-14304) and blockable with an alpha(2)-adrenoceptor antagonist (idazoxan). Although the alpha(1)-adrenoceptor agonist cirazoline and the alpha(1)-adrenoceptor antagonist prazosin were without effect on these evoked IPSCs, NE was noted to increase (via alpha(1)-adrenoceptors) or decrease (via alpha(2)-adrenoceptors) the frequency of spontaneous and tetrodotoxin-resistant miniature IPSCs. Collectively, these observations imply that both presynaptic and postsynaptic alpha(1)- and alpha(2)-adrenoceptors in MnPO are capable of selective modulation of rapid GABA(A) receptor-mediated inhibitory synaptic transmission along the lamina terminalis and therefore likely to exert a prominent influence in regulating cell excitability within the MnPO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic -adrenoceptors in median preoptic nucleus modulate inhibitory neurotransmission from subfornical organ and organum vasculosum lamina terminalis

Kolaj M, Renaud LP. Presynaptic -adrenoceptors in median preoptic nucleus modulate inhibitory neurotransmission from subfornical organ and organum vasculosum lamina terminalis. Am J Physiol Regul Integr Comp Physiol 292: R1907–R1915, 2007. First published January 11, 2007; doi:10.1152/ajpregu.00763.2006.—The median preoptic nucleus (MnPO) in the lamina terminalis receives a prominent catecholam...

متن کامل

Water intake and the neural correlates of the consciousness of thirst.

Thirst and resultant water drinking can arise in response to deficits in both the intracellular and extracellular fluid compartments. Inhibitory influences mediating the satiation of thirst also are necessary to prevent overhydration. The brain regions that underpin the generation or inhibition of thirst in these circumstances can be categorized as sensory, integrative, or cortical effector sit...

متن کامل

Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep.

The subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), and median preoptic nucleus (MnPO) were ablated either individually or in various combinations, and the effects on drinking induced by either intravenous infusion of hypertonic 4 M NaCl (1.3 ml/min for 30 min) or water deprivation for 48 h were studied. Ablation of either the OVLT or SFO alone did not affect drinki...

متن کامل

Subfornical organ disconnection alters Fos expression in the lamina terminalis, supraoptic nucleus, and area postrema after intragastric hypertonic NaCl.

The lamina terminalis was severed by a horizontal knife cut through the anterior commissure to determine the effects of a disconnection of the subfornical organ (SFO) on drinking and Fos-like immunoreactivity (Fos-ir) in the rat brain in response to an intragastric load of hypertonic saline (5 ml/kg of 1.5 M NaCl by gavage). After an initial load, knife-cut rats drank significantly less water t...

متن کامل

The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement.

The brain transforms the need for water into the desire to drink, but how this transformation is performed remains unknown. Here we describe the motivational mechanism by which the forebrain thirst circuit drives drinking. We show that thirst-promoting subfornical organ neurons are negatively reinforcing and that this negative-valence signal is transmitted along projections to the organum vascu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007