Remote sensing of soot carbon – Part 2: Understanding the absorption Ångström exponent
نویسندگان
چکیده
Recently, some authors have suggested that the absorption Ångström exponent (AAE) can be used to deduce the component aerosol absorption optical depths (AAODs) of carbonaceous aerosols in the AERONET database. This AAE approach presumes that AAE 1 for soot carbon, which contrasts the traditional small particle limit of AAE= 1 for soot carbon. Thus, we provide an overview of the AERONET retrieval, and we investigate how the microphysics of carbonaceous aerosols can be interpreted in the AERONET AAE product. We find that AAE 1 in the AERONET database requires large coarse mode fractions and/or imaginary refractive indices that increase with wavelength. Neither of these characteristics are consistent with the current definition of soot carbon, so we explore other possibilities for the cause of AAE 1. AAE is related to particle size, and coarse mode particles have a smaller AAE than fine mode particles for a given aerosol mixture of species. We also note that the mineral goethite has an imaginary refractive index that increases with wavelength, is very common in dust regions, and can easily contribute to AAE 1. We find that AAE 1 can not be caused by soot carbon, unless soot carbon has an imaginary refractive index that increases with wavelength throughout the visible and near-infrared spectrums. Finally, AAE is not a robust parameter for separating carbonaceous absorption from dust aerosol absorption in the AERONET database.
منابع مشابه
The Ångström Exponent and Turbidity of Soot Component in the Radiative Forcing of Urban Aerosols
In this work, we extracted data from Optical Properties of Aerosols and Clouds (OPAC) using FORTRAN program to model the effect of soot on optical depth, scattering coefficient, absorption coefficient, single scattering albedo, extinction coefficient and asymmetry parameter at spectral range of 0.25 to 1.00 m for eight different relative humidities (RHs) (0, 50, 70, 80, 90, 95, 98 and 99%). Th...
متن کاملAerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing
The scattering and absorption of solar radiation by atmospheric aerosols is a key element of the Earth’s radiative energy balance and climate. The optical properties of aerosol particles are, however, highly variable and not well characterized, especially near newly emerging mega-cities. In this study, aerosol optical properties were measured at a rural site approximately 60 km northwest of the...
متن کاملThe spectral and chemical measurement of pollutants on snow near South Pole, Antarctica
Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily...
متن کاملAerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B
Remote sensing of cloud condensation nuclei (CCN) would help evaluate the indirect effects of tropospheric aerosols on clouds and climate. To assess its feasibility, we examined relationships of submicron aerosol composition to CCN activity and optical properties observed during the MILAGRO/INTEX-B aircraft campaigns. An indicator of CCN activity, κ , was calculated from hygroscopicity measured...
متن کاملAdsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling.
Four contrasting descriptions of the gas-particle partitioning of SOCs are currently used: the Junge-Pankow adsorption model, the empirical Finizio organic matter (OM) absorption relationship, the Harner-Bidleman OM absorption model, and a dual black carbon (BC) adsorption and OM absorption model. Use of these four descriptions in a box model resulted in very different global fates, particularl...
متن کامل