On Pseudo-hermitian Einstein Spaces

نویسنده

  • FELIPE LEITNER
چکیده

We describe and construct here pseudo-Hermitian structures θ without torsion (i.e. with transversal symmetry) whose Webster-Ricci curvature tensor is a constant multiple of the exterior differential dθ. We call these structures pseudo-Hermitian Einstein and our result states that they all can be derived locally from Kähler-Einstein metrics. Moreover, we discuss the corresponding Fefferman metrics of the pseudo-Hermitian Einstein structures. These Fefferman metrics are never Einstein, but they are locally always conformally Einstein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bochner Ricci Semi-symmetric Hermitian Manifold

The aim of the present paper is to study a Bochner Ricci semi-symmetric quasi-Einstein Hermitian manifold (QEH)n, a Bochner Ricci semi-symmetric generalised quasi-Einstein Hermitian manifold G(QEH)n and a Bochner Ricci semisymmetric pseudo generalised quasi-Einstein Hermitian manifold P (GQEH)n.

متن کامل

Einstein–Weyl geometry, the dKP equation and twistor theory

It is shown that Einstein–Weyl (EW) equations in 2+1 dimensions contain the dispersionless Kadomtsev–Petviashvili (dKP) equation as a special case: If an EW structure admits a constant weighted vector then it is locally given by h = dy2−4dxdt−4udt2, ν = −4uxdt, where u = u(x, y, t) satisfies the dKP equation (ut − uux)x = uyy. Linearised solutions to the dKP equation are shown to give rise to f...

متن کامل

Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...

متن کامل

Finsler and Lagrange Geometries in Einstein and String Gravity

We review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler g...

متن کامل

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005