Metal active site elasticity linked to activation of homocysteine in methionine synthases.

نویسندگان

  • Markos Koutmos
  • Robert Pejchal
  • Theresa M Bomer
  • Rowena G Matthews
  • Janet L Smith
  • Martha L Ludwig
چکیده

Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and inhibition studies of catechol O-methyltransferase from the yeast Candida tropicalis.

The Kms for esculetin and S-adenosyl-L-methionine for catechol O-methyltransferase from the yeast Candida tropicalis were 6.2 and 40 microM, respectively. S-Adenosyl-L-homocysteine was a very potent competitive inhibitor with respect to S-adenosyl-L-methionine, with a Ki of 6.9 microM. Of the catechol-related inhibitors, purpurogallin, with a Ki of 0.07 microM, showed the greatest inhibitory ef...

متن کامل

Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel That Evolved by Gene Duplication

Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T...

متن کامل

Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells

Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...

متن کامل

Mechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase

Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...

متن کامل

Crystal structures of cobalamin-independent methionine synthase complexed with zinc, homocysteine, and methyltetrahydrofolate.

Cobalamin-independent methionine synthase (MetE) catalyzes the synthesis of methionine by a direct transfer of the methyl group of N5-methyltetrahydrofolate (CH3-H2PteGlun) to the sulfur atom of homocysteine (Hcy). We report here the first crystal structure of this metalloenzyme under different forms, free or complexed with the Hcy and folate substrates. The Arabidopsis thaliana MetE (AtMetE) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 9  شماره 

صفحات  -

تاریخ انتشار 2008