Comparative Genomics of Aeschynomene Symbionts: Insights into the Ecological Lifestyle of Nod-Independent Photosynthetic Bradyrhizobia
نویسندگان
چکیده
Tropical aquatic species of the legume genus Aeschynomene are stem- and root-nodulated by bradyrhizobia strains that exhibit atypical features such as photosynthetic capacities or the use of a nod gene-dependent (ND) or a nod gene-independent (NI) pathway to enter into symbiosis with legumes. In this study we used a comparative genomics approach on nine Aeschynomene symbionts representative of their phylogenetic diversity. We produced draft genomes of bradyrhizobial strains representing different phenotypes: five NI photosynthetic strains (STM3809, ORS375, STM3847, STM4509 and STM4523) in addition to the previously sequenced ORS278 and BTAi1 genomes, one photosynthetic strain ORS285 hosting both ND and NI symbiotic systems, and one NI non-photosynthetic strain (STM3843). Comparative genomics allowed us to infer the core, pan and dispensable genomes of Aeschynomene bradyrhizobia, and to detect specific genes and their location in Genomic Islands (GI). Specific gene sets linked to photosynthetic and NI/ND abilities were identified, and are currently being studied in functional analyses.
منابع مشابه
Genome Analysis of a Novel Bradyrhizobium sp. DOA9 Carrying a Symbiotic Plasmid
Bradyrhizobium sp. DOA9 isolated from the legume Aeschynomene americana exhibited a broad host range and divergent nodulation (nod) genes compared with other members of the Bradyrhizobiaceae. Genome analysis of DOA9 revealed that its genome comprised a single chromosome of 7.1 Mbp and a plasmid of 0.7 Mbp. The chromosome showed highest similarity with that of the nod gene-harboring soybean symb...
متن کاملPreferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution.
Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophyti...
متن کاملThe LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes
The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected...
متن کاملA gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes
Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along wi...
متن کاملGenetic diversity, symbiotic evolution, and proposed infection process of Bradyrhizobium strains isolated from root nodules of Aeschynomene americana L. in Thailand.
The diversity of bacteria nodulating Aeschynomene americana L. in Thailand was determined from phenotypic characteristics and multilocus sequence analysis of the 16S rRNA gene and 3 housekeeping genes (dnaK, recA, and glnB). The isolated strains were nonphotosynthetic bacteria and were assigned to the genus Bradyrhizobium, in which B. yuanmingense was the dominant species. Some of the other spe...
متن کامل