The Edge Slide Graph of the 3-cube

نویسنده

  • Lyndal Henden
چکیده

The goal of this paper is to study the spanning trees of the 3-cube by understanding their edge slide graph. A spanning tree of a graph G is a minimal set of edges that connects all vertices. An edge slide occurs in a spanning tree of the 3-cube when a single edge can be slid across a 2-dimensional face to form another spanning tree. The edge slide graph is the graph whose vertices are the spanning trees, with an edge between two vertices if the spanning trees are related by a single edge slide. This report completely determines the edge slide graph of the 3-cube. The edge slide graph of the 3-cube has twelve components isomorphic to the 4-cube, and three other components, mutually isomorphic, with 64 vertices each. The main result is to determine the structure of the three components that each have 64 vertices and we also describe their symmetries. Some partial results on the 4-cube are also provided. Acknowledgements: I would like to thank Dr. Christopher Tuffley for his help with this paper. 68

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting the spanning trees of the 3-cube using edge slides

We give a direct combinatorial proof of the known fact that the 3-cube has 384 spanning trees, using an “edge slide” operation on spanning trees. This gives an answer in the case n = 3 to a question implicitly raised by Stanley. Our argument also gives a bijective proof of the n = 3 case of a weighted count of the spanning trees of the n-cube due to Martin and Reiner.

متن کامل

CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS

In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy  sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...

متن کامل

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

متن کامل

On the edge reverse Wiener indices of TUC4C8(S) nanotubes

The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.

متن کامل

THE (△,□)-EDGE GRAPH G△,□ OF A GRAPH G

To a simple graph $G=(V,E)$, we correspond a simple graph $G_{triangle,square}$ whose vertex set is ${{x,y}: x,yin V}$ and two vertices ${x,y},{z,w}in G_{triangle,square}$ are adjacent if and only if ${x,z},{x,w},{y,z},{y,w}in Vcup E$. The graph $G_{triangle,square}$ is called the $(triangle,square)$-edge graph of the graph $G$. In this paper, our ultimate goal is to provide a link between the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011