Cumulants in Noncommutative Probability Theory I. Noncommutative Exchangeability Systems

نویسنده

  • FRANZ LEHNER
چکیده

Cumulants linearize convolution of measures. We use a formula of Good to define noncommutative cumulants in a very general setting. It turns out that the essential property needed is exchangeability of random variables. Roughly speaking the formula says that cumulants are moments of a certain “discrete Fourier transform” of a random variable. This provides a simple unified method to understand the known examples of cumulants, like classical, free and various q-cumulants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cumulants in Noncommutative Probability Theory Iv. Noncrossing Cumulants: De Finetti’s Theorem, L-inequalities and Brillinger’s Formula

In this paper we collect a few results about exchangeability systems in which crossing cumulants vanish, which we call noncrossing exchangeability systems. De Finetti’s theorem states that any exchangeable sequence of random variables is conditionally i.i.d. with respect to some σ-algebra. In this paper we prove a “free” noncommutative analog of this theorem, namely we show that any noncrossing...

متن کامل

Cumulants in Noncommutative Probability Theory III. Creation and annihilation operators on Fock spaces

Cumulants of noncommutative random variables arising from Fock space constructions are considered. In particular, simplified calculations are given for several known examples on q-Fock spaces. In the second half of the paper we consider in detail the Fock states associated to characters of the infinite symmetric group recently constructed by Bożejko and Guta. We express moments of multidimensio...

متن کامل

Homotopy Probability Theory I

This is the first of two papers that introduce a deformation theoretic framework to explain and broaden a link between homotopy algebra and probability theory. In this paper, cumulants are proved to coincide with morphisms of homotopy algebras. The sequel paper outlines how the framework presented here can assist in the development of homotopy probability theory, allowing the principles of deri...

متن کامل

Noncommutative characterization of free Meixner processes ∗

In this article we give a purely noncommutative criterion for the characterization of free Meixner random variables. We prove that some families of free Meixner distributions can be described in terms of the conditional expectation, which has no classical analogue. We also show a generalization of Speicher’s formula (relating moments and free cumulants) and establish a new relation in free prob...

متن کامل

Homotopy Probability Theory

This is the first of two papers that introduce a deformation theoretic framework to explain and broaden a link between homotopy algebra and probability theory. In this paper, cumulants are proved to coincide with morphisms of homotopy algebras. The sequel paper outlines how the framework presented here can assist in the development of homotopy probability theory, allowing the principles of deri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008