On finite element method-flux corrected transport stabilization for advection-diffusion problems in a partial differential-algebraic framework

نویسندگان

  • Julia Vuong
  • Bernd Simeon
چکیده

An extension of the finite element method–flux corrected transport stabilization for hyperbolic problems in the context of partial differential–algebraic equations is proposed. Given a local extremum diminishing property of the spatial discretization, the positivity preservation of the one-step θ-scheme when applied to the time integration of the resulting differential–algebraic equation is shown, under a mild restriction on the time step size. As a crucial tool in the analysis, the Drazin inverse and the corresponding Drazin ordinary differential equation are explicitly derived. Numerical results are presented for non-constant and time-dependent boundary conditions in one space dimension and for a two-dimensional advection problem with a sinusoidal inflow boundary condition and the advection proceeding skew to the mesh. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Framework for Pattern-forming Models on Evolving-in-time Surfaces

In this article we describe a numerical framework for a system of coupled reaction-diffusion equations on an evolving-in-time hypersurface Γ. The proposed framework combines the level set methodology for the implicit description of the time dependent Γ, the Eulerian finite element formulation for the numerical treatment of partial differential equations and the flux-corrected transport scheme f...

متن کامل

Convergence analysis of an upwind mixed element method for advection diffusion problems

We consider a upwinding mixed element method for a system of first order partial differential equations resulting from the mixed formulation of a general advection diffusion problem. The system can be used to model the transport of a contaminant carried by a flow. We use the lowest order Raviart–Thomas mixed finite element space. We show the first order convergence both for concentration and co...

متن کامل

A Volume Mesh Finite Element Method for Pdes on Surfaces

We treat a surface finite element method that is based on the trace of a standard finite element space on a tetrahedral triangulation of an outer domain that contains a stationary 2D surface. This surface FEM is used to discretize partial differential equation on the surface. We demonstrate the performance of this method for stationary and time-dependent diffusion equations. For the stationary ...

متن کامل

On the design of general-purpose flux limiters for implicit FEM with a consistent mass matrix

The algebraic flux correction (AFC) paradigm is extended to finite element discretizations with a consistent mass matrix. It is shown how to render an implicit Galerkin scheme positivity-preserving and remove excessive artificial diffusion in regions where the solution is sufficiently smooth. To this end, the original discrete operators are modified in a mass-conserving fashion so as to enforce...

متن کامل

A parameter-free stabilized finite element method for scalar advection-diffusion problems

We formulate and study numerically a new, parameter-free stabilized finite element method for advectiondiffusion problems. Using properties of compatible finite element spaces we establish connection between nodal diffusive fluxes and one-dimensional diffusion equations on the edges of the mesh. To define the stabilized method we extend this relationship to the advection-diffusion case by solvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 262  شماره 

صفحات  -

تاریخ انتشار 2014