Spectral Properties of a Class of Reflectionless Schrödinger Operators

نویسنده

  • FRITZ GESZTESY
چکیده

We prove that one-dimensional reflectionless Schrödinger operators with spectrum a homogeneous set in the sense of Carleson, belonging to the class introduced by Sodin and Yuditskii, have purely absolutely continuous spectra. This class includes all earlier examples of reflectionless almost periodic Schrödinger operators. In addition, we construct examples of reflectionless Schrödinger operators with more general types of spectra, given by the complement of a Denjoy– Widom-type domain in C, which exhibit a singular component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Spectral Properties of Reflectionless Jacobi, Cmv, and Schrödinger Operators

We prove that Jacobi, CMV, and Schrödinger operators, which are reflectionless on a homogeneous set E (in the sense of Carleson), under the assumption of a Blaschke-type condition on their discrete spectra accumulating at E, have purely absolutely continuous spectrum on E.

متن کامل

The Absolutely Continuous Spectrum of One-dimensional Schrödinger Operators

This paper deals with general structural properties of one-dimensional Schrödinger operators with some absolutely continuous spectrum. The basic result says that the ω limit points of the potential under the shift map are reflectionless on the support of the absolutely continuous part of the spectral measure. This implies an Oracle Theorem for such potentials and DenisovRakhmanov type theorems....

متن کامل

Essential Closures and Ac Spectra for Reflectionless Cmv, Jacobi, and Schrödinger Operators Revisited

We provide a concise, yet fairly complete discussion of the concept of essential closures of subsets of the real axis and their intimate connection with the topological support of absolutely continuous measures. As an elementary application of the notion of the essential closure of subsets of R we revisit the fact that CMV, Jacobi, and Schrödinger operators, reflectionless on a set E of positiv...

متن کامل

Trace Formulas and Inverse Spectral Theory for Jacobi Operators

Based on high energy expansions and Herglotz properties of Green and Weyl m-functions we develop a self-contained theory of trace formulas for Jacobi operators. In addition, we consider connections with inverse spectral theory, in particular uniqueness results. As an application we work out a new approach to the inverse spectral problem of a class of reflectionless operators producing explicit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008