Pan-Vertebrate Toll-Like Receptors During Evolution

نویسندگان

  • Hiroyuki Oshiumi
  • Aya Matsuo
  • Misako Matsumoto
  • Tsukasa Seya
چکیده

Human toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) to raise innate immune responses. The human TLR family was discovered because of its sequence similarity to fruit fly (Drosophila) Toll, which is involved in an anti-fungal response. In this review, we focus on the origin of the vertebrate TLR family highlighted through functional and phylogenetic analyses of TLRs in non-mammalian vertebrates. Recent extensive genome projects revealed that teleosts contain almost all subsets of TLRs that correspond to human TLRs (TLR1, 2, 3, 4, 5, 7, 8, and 9), whereas the urochordate Cionaintestinalis contains only a few TLR genes. Therefore, mammals likely obtained almost all TLR family members at the beginning of vertebrate evolution. This premise is further supported by several functional analyses of non-mammalian TLRs. We have summarized several teleost TLRs with unique properties distinct from mammalian TLRs to outline their specific roles. According to Takifugu rubripes genome project, the puffer fish possesses fish-specific TLR21 and 22. Surprisingly, phylogenetic analyses indicate that TLR21 and 22 emerged during an early period of vertebrate evolution in parallel with other TLRs and that the mammalian ancestor lost TLR21 and 22 during evolution. Our laboratory recently revealed that TLR22 recognizes double-strand RNA and induces interferon production through the TICAM-1 adaptor, as in TLR3, but unlike TLR3, TLR22 localizes to the cell surface. Therefore, differential expression of TLR3 and TLR22, rather than simple redundancy of RNA sensors, may explain the effective protection of fish from RNA virus infection in the water. In this review, we summarize the similarities and differences of the TLR family in various vertebrates and introduce these unique TLRs for a possible application to the field of clinical practices for cancer or virus infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A history of recurrent positive selection at the toll-like receptor 5 in primates.

Many genes involved in immunity evolve rapidly. It remains unclear, however, to what extent pattern-recognition receptors (PRRs) of the innate immune system in vertebrates are subject to recurrent positive selection imposed by pathogens, as suggested by studies in Drosophila, or whether they are evolutionarily constrained. Here, we show that Toll-like receptor 5 (TLR5), a member of the Toll-lik...

متن کامل

Ectodomain Architecture Affects Sequence and Functional Evolution of Vertebrate Toll-like Receptors

Toll-like receptors (TLRs) are crucial components of innate immunity that specifically recognize diverse pathogen-associated molecular patterns from pathogens. The continuous hydrogen-bond network (asparagine ladder) formed among the asparagine residues on the concave surfaces of neighboring leucine-rich repeat modules assists in stabilizing the overall shape of TLR ectodomains responsible for ...

متن کامل

Simvastatin and Recombinant Antagonist of Receptors of Interleukin-1 Modulate Toll-like Receptors in Experimental Acute Ileitis in Rat

Background: The pathogenesis of inflammatory bowel disease is complex and multifactorial. Studies have led to the current concept that Toll-like receptors represent key mediators of innate host defense in the intestine, and they are involved in maintaining mucosal as well as commensal homeostasis. We studied the possibility of simvastatin and antagonist of receptors of interleukin-1 for pharmac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Genomics

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008