Renormalization flow for unrooted forests on a triangular lattice

نویسندگان

  • Sergio Caracciolo
  • Claudia De Grandi
  • Andrea Sportiello
چکیده

We compute in small temperature expansion the two-loop renormalization constants and the three-loop coefficient of the β-function, that is the first non-universal term, for the σ-model with O(N) invariance on the triangular lattice at N = −1. The partition function of the corresponding Grassmann theory is, for negative temperature, the generating function of unrooted forests on such a lattice, where the temperature acts as a chemical potential for the number of trees in the forest. To evaluate Feynman diagrams we extend the coordinate space method to the triangular lattice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical behavior of the antiferromagnetic Heisenberg model on a stacked triangular lattice

We estimate, using a large-scale Monte Carlo simulation, the critical exponents of the antiferromagnetic Heisenberg model on a stacked triangular lattice. We obtain the following estimates: γ/ν = 2.011± .014, ν = .585± .009. These results contradict a perturbative 2 + ǫ Renormalization Group calculation that points to Wilson-Fisher O(4) behaviour. While these results may be coherent with 4−ǫ re...

متن کامل

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

X iv : c on d - m at / 9 61 22 26 v 1 2 5 D ec 1 99 6 Renormalization Group Study of Sandpile on the Triangular Lattice

We apply the renormalization group approach to the sandpile on the triangular lattice. The only attractive fixed point is found. The obtained fixed point height probabilities are compared with numerical simulations. The value of critical exponent of avalanche size distribution is found to be τ = 1.36. The probabilities of the sand transition are compared with the branching probabilities of the ...

متن کامل

Alternative approaches to obtain t-norms and t-conorms on bounded lattices

Triangular norms in the study of probabilistic metric spaces as a special kind of associative functions defined on the unit interval. These functions have found applications in many areas since then. In this study, we present new methods for constructing triangular norms and triangular conorms on an arbitrary bounded lattice under some constraints. Also, we give some illustrative examples for t...

متن کامل

Hubbard model with bond-charge interaction on a triangular lattice: a renormalization group study

We have studied the Hubbard model with bond-charge interaction on a triangular lattice for a half-filled band. At the point of particle-hole symmetry the model could be analyzed in detail in two opposite regimes of the parameter space. Using a real space renormalization group we calculate the ground state energy and the local moment over the whole parameter space. The RG results obey the exact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008