Vehicle suspension and steering nonlinear integrated system coordinated control based on human-vehicle function allocation
نویسندگان
چکیده
The coupled dynamics between the vehicle chassis suspension system and electrical power steering system(EPS) is analyzed, to establish the full-vehicle nonlinear model, EPS model, tire model and road input model. The tire’s complex nonlinear model is approximated by utilizing the least square method, so as to obtain the integrated system model with the 22-order. To simplify the nonlinear controller design, the nonlinear dynamics model is separated into two parts of nonlinear part and linear part. The state feedback optimal controller is designed for the linear part model, and the linear compensator based on the deviation separation is for the nonlinear part model, which can ensure the closed-loop control system is exponential asymptotic stability at the equilibrium point. The human-vehicle function allocation is adopted to adjust the two subsystems’ output weights based on the fuzzy rules, to restrain the suspension roll motion and adaptively compensating driver’s steering torque. The considerable simulations are carried out, and the results demonstrate that the suspension and EPS coordinated control system by applying bilinear control can obtain better performance than another nonlinear control method; the human-vehicle function allocation can further improve the vehicle whole-region control performance.
منابع مشابه
Modeling and Optimal Control of 4 Wheel Steering Vehicle Using LQR and its Comparison with 2 Wheel Steering Vehicle
In this paper, kinetic and kinematic modeling of a 4 wheel steering vehicle is done and its movement is controlled in an optimal way using Linear Quadratic Regulator (LQR). The results are compared with the same control of two-wheel steering case and the advantages are analyzed. In 4 wheel steering vehicles which are nowadays more applicable the number of controlling actuators are more than the...
متن کاملModelling and Control of a Vehicle with Single-wheel Chassis Actuators
For a vehicle equipped with active single-wheel steering, brake, drive and suspension systems a nonlinear vehicle model is presented. On the basis of this model an integrated vehicle dynamics control is developed comprising all of the mentioned chassis actuators to control the plane vehicle motion. The basic control strategy consists in two parts. One part is a flatness based tracking controlle...
متن کاملOptimal Roll Center Height of Front McPherson Suspension System for a Conceptual Class A Vehicle
In this paper, the effects of roll center height of McPherson suspension mechanism on dynamic behaviour of a vehicle are first studied, and then the optimum location of roll center of this suspension system is determined for a conceptual Class A vehicle. ADAMS/Car software was used for the analysis of vehicle dynamic behaviour in different positions of suspension roll center. Next, optimization...
متن کاملA New Fuzzy Sliding Mode Controller with Auto-Adjustable Saturation Boundary Layers Implemented on Vehicle Suspension
This study develops a fuzzy sliding mode controller (FSMC) based on a variable boundary layer. A fuzzy inference mechanism is used to on-line tune the thickness of the boundary layers of the controller. Minimum rule base has been used for the fuzzy inference system which results in low calculation effort. The aim of this paper is to design a controller which will eliminate the chattering of FSM...
متن کاملThe Optimal Steering Control System using Imperialist Competitive Algorithm on Vehicles with Steer-by-Wire System
Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering system using Imperialist Competitive Algorithm (IC...
متن کامل