Increased PI3-kinase in presympathetic brain areas of the spontaneously hypertensive rat.

نویسندگان

  • Shereeni J Veerasingham
  • Masanobu Yamazato
  • Kathleen H Berecek
  • J Michael Wyss
  • Mohan K Raizada
چکیده

Existing evidence led us to hypothesize that increases in p85alpha, a regulatory subunit of PI3-kinase, in presympathetic brain areas contribute to hypertension. PI3-kinase p85alpha, p110alpha, and p110delta mRNA was 1.5- to 2-fold higher in the paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHR) compared with their controls, Wistar Kyoto rats (WKY). The increase in p85alpha/p110delta was attenuated in SHR treated with captopril, an angiotensin (Ang)-converting enzyme inhibitor, from in utero to 6 months of age. In the rostral ventrolateral medulla (RVLM), p110delta mRNA was approximately 2-fold higher in SHR than in WKY. Moreover, the increases in mRNA were associated with higher PI3-kinase activity in both nuclei. The functional relevance was studied in neuronal cultures because SHR neurons reflect the augmented p85alpha mRNA and PI3-kinase activity. Expression of a p85 dominant-negative mutant decreased norepinephrine (NE) transporter mRNA and [3H]NE uptake by approximately 60% selectively in SHR neurons. In summary, increased p85alpha/p110delta expression in the PVN and RVLM is associated with increased PI3-kinase activity in the SHR. Furthermore, normalized PI3-kinase p85alpha/p110delta expression within the PVN might contribute to the overall effect of captopril, perhaps attributable to a consequent decrease in NE availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-indepen...

متن کامل

PI3-kinase inhibitors abolish the enhanced chronotropic effects of angiotensin II in spontaneously hypertensive rat brain neurons.

Angiotensin II (Ang II), acting at Ang II type 1 receptors (AT1Rs), increases the firing rate of neurons from Wistar-Kyoto (WKY) rat brain via protein kinase C (PKC)- and calcium-calmodulin kinase II (CaMKII)-dependent mechanisms. The objectives of this study were twofold; first, to compare the Ang-II-stimulated increase in firing of neurons from WKY and spontaneous hypertensive rats (SHR) and ...

متن کامل

Specific respiratory neuron types have increased excitability that drive presympathetic neurones in neurogenic hypertension.

A major aspect of hypertension is excessive sympathetic activity but the reasons for this remain elusive. Sympathetic tone is increased in the spontaneously hypertensive (SH) rat reflecting, in part, enhanced respiratory-sympathetic coupling. We aimed to identify which respiratory cells might have altered properties. Using the working heart-brain stem preparation, we monitored simultaneously sy...

متن کامل

Immunohistochemical evidence of tissue hypoxia and astrogliosis in the rostral ventrolateral medulla of spontaneously hypertensive rats

Increased activity of the sympathetic nervous system has been highlighted as a key factor that contributes to the development and maintenance of arterial hypertension. However, the factors that precipitate sustained increases in sympathetic activity remain poorly understood. Resting tissue oxygen partial pressure (PtO2) in the brainstem of anesthetized spontaneously hypertensive rats (SHRs) has...

متن کامل

Stimulated tyrosine phosphorylation of phosphatidylinositol 3-kinase causes acidic pH-induced contraction in spontaneously hypertensive rat aorta.

Acidic pH induced a contraction (APIC) in isolated aortas from spontaneously hypertensive (SHR) and Wistar Kyoto rats, but failed to produce any response in age-matched Wistar rat aorta. This study was conducted to test the hypothesis that tyrosine phosphorylation of proteins is a molecular mechanism underlying the APIC. Tyrosine kinase inhibitors, genistein and tyrphostin 23 inhibited the APIC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2005