Protonmotive force: development of electrostatic drivers for synthetic molecular motors.

نویسندگان

  • James D Crowley
  • Ian M Steele
  • Brice Bosnich
چکیده

Ferrocene has been investigated as a platform for developing protonmotive electrostatic drivers for molecular motors. When two 3-pyridine groups are substituted to the (rapidly rotating) cyclopentadienyl (Cp) rings of ferrocene, one on each Cp, it is shown that the (Cp) eclipsed, pi-stacked rotameric conformation is preferred both in solution and in the solid state. Upon quaternization of both of the pyridines substituents, either by protonation or by alkylation, it is shown that the preferred rotameric conformation is one where the pyridinium groups are rotated away from the fully pi-stacked conformation. Electrostatic calculations indicate that the rotation is caused by the electrostatic repulsion between the charges. Consistently, when the pi-stacking energy is increased pi-stacked population increases, and conversely when the electrostatic repulsion is increased pi-stacked population is decreased. This work serves to provide an approximate estimate of the amount of torque that the electrostatically driven ferrocene platform can generate when incorporated into a molecular motor. The overall conclusion is that the electrostatic interaction energy between dicationic ferrocene dipyridyl systems is similar to the pi-stacking interaction energy and, consequently, at least tricationic systems are required to fully uncouple the pi-stacked pyridine substituents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotary DNA motors.

Many molecular motors move unidirectionally along a DNA strand powered by nucleotide hydrolysis. These motors are multimeric ATPases with more than one hydrolysis site. We present here a model for how these motors generate the requisite force to process along their DNA track. This novel mechanism for force generation is based on a fluctuating electrostatic field driven by nucleotide hydrolysis....

متن کامل

Electrostatic Linear Inchworm Motors

We have demonstrated a family of large force and large displacement electrostatic linear inchworm motors that operate with moderate to high voltages. The inchworm motor design decouples actuator force from total travel and allows the use of electrostatic gap-closing actuators to achieve large force and large displacement while consuming low power. A typical inchworm motor measures 3 mm 1 mm 50 ...

متن کامل

Application of Thau Observer for Fault Detection of Micro Parallel Plate Capacitor Subjected to Nonlinear Electrostatic Force

This paper investigates the fault detection of a micro parallel plate capacitor subjected to nonlinear electrostatic force. For this end Thau observer, which has good ability in fault detection of nonlinear system has been presented and governing nonlinear dynamic equation of the capacitor has been presented. Upper and lower threshold for fault detection have been obtained. The robustness of th...

متن کامل

ATP Synthesis: The World’s Smallest Wind-Up Toy

ATP synthase contains two rotary motors coupled back-to-back: the protonmotive force-driven motor F0 pushes the ATP-driven motor F1 in reverse, causing it to synthesize ATP. Half of this process has now been reproduced in vitro, using tiny magnets instead of F0 to drive the reverse rotation of a single F1 molecule.

متن کامل

A Rotary Motor Drives Flavobacterium Gliding

Cells of Flavobacterium johnsoniae, a rod-shaped bacterium devoid of pili or flagella, glide over glass at speeds of 2-4 μm/s [1]. Gliding is powered by a protonmotive force [2], but the machinery required for this motion is not known. Usually, cells move along straight paths, but sometimes they exhibit a reciprocal motion, attach near one pole and flip end over end, or rotate. This behavior is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 12 35  شماره 

صفحات  -

تاریخ انتشار 2006