Coevolution of the S-locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa.

نویسندگان

  • Keiichi Sato
  • Takeshi Nishio
  • Ryo Kimura
  • Makoto Kusaba
  • Tohru Suzuki
  • Katsunori Hatakeyama
  • David J Ockendon
  • Yoko Satta
چکیده

Brassica self-incompatibility (SI) is controlled by SLG and SRK expressed in the stigma and by SP11/SCR expressed in the anther. We determined the sequences of the S domains of 36 SRK alleles, 13 SLG alleles, and 14 SP11 alleles from Brassica oleracea and B. rapa. We found three S haplotypes lacking SLG genes in B. rapa, confirming that SLG is not essential for the SI recognition system. Together with reported sequences, the nucleotide diversities per synonymous and nonsynonymous site (pi(S) and pi(N)) at the SRK, SLG, and SP11 loci within B. oleracea were computed. The ratios of pi(N):pi(S) for SP11 and the hypervariable region of SRK were significantly >1, suggesting operation of diversifying selection to maintain the diversity of these regions. In the phylogenetic trees of 12 SP11 sequences and their linked SRK alleles, the tree topology was not significantly different between SP11 and SRK, suggesting a tight linkage of male and female SI determinants during the evolutionary course of these haplotypes. Genetic exchanges between SLG and SRK seem to be frequent; three such recent exchanges were detected. The evolution of S haplotypes and the effect of gene conversion on self-incompatibility are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the genome structure of the self-incompatibility (S) locus in interspecific pairs of S haplotypes.

The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, both of which are encoded in the S locus. The nucleotide sequence analyses of many SRK and SP11/SCR alleles have identified several interspecific pairs of S haplotypes having highly similar sequences between B. oleracea and B. rapa. These interspecific pairs of S hap...

متن کامل

Diversification and Alteration of Recognition Specificity of the Pollen Ligand SP11/SCR in Self-Incompatibility of Brassica and Raphanus W

The recognition specificity of the pollen ligand of self-incompatibility (SP11/SCR) was investigated using Brassica rapa transgenic plants expressing SP11 transgenes, and SP11 of Raphanus sativus S-21 was found to have the same recognition specificity as that of B. rapa S-9. In a set of three S haplotypes, whose sequence identities of SP11 and SRK are fairly high, R. sativus S-6 showed the same...

متن کامل

Diversification and alteration of recognition specificity of the pollen ligand SP11/SCR in self-incompatibility of Brassica and Raphanus.

The recognition specificity of the pollen ligand of self-incompatibility (SP11/SCR) was investigated using Brassica rapa transgenic plants expressing SP11 transgenes, and SP11 of Raphanus sativus S-21 was found to have the same recognition specificity as that of B. rapa S-9. In a set of three S haplotypes, whose sequence identities of SP11 and SRK are fairly high, R. sativus S-6 showed the same...

متن کامل

Characterization of expressed genes in the SLL2 region of self-compatible Arabidopsis thaliana.

Self-incompatibility in Brassica species is regulated by a set of S-locus genes: SLG, SRK, and SP11/SCR. In the vicinity of the S-locus genes, several expressed genes, SLL2 and SP2/ClpP, etc., were identified in B. campestris. Arabidopsis thaliana is a self-compatible Brassica relative, and its complete genome has been sequenced. From comparison of the genomic sequences between B. campestris an...

متن کامل

Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in brassica self-incompatibility.

In Brassica self-incompatibility, the recognition of self/nonself pollen grains, is controlled by the S-locus, which encodes three highly polymorphic proteins: S-locus receptor kinase (SRK), S-locus protein 11 (SP11; also designated S-locus Cys-rich protein), and S-locus glycoprotein (SLG). SP11, located in the pollen coat, determines pollen S-haplotype specificity, whereas SRK, located on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 162 2  شماره 

صفحات  -

تاریخ انتشار 2002