SDE - A program package for the simulation, optimal filtering and maximum likelihood estimation of nonlinear Stochastic Differential Equations

نویسنده

  • Hermann Singer
چکیده

Continuous time models with sampled data possess several advantages over conventional time series and panel models (special issue 62:1, 2008, of Statistica Neerlandica). For example, data with unequal time intervals can be treated efficiently, since the dynamic model parameters of the system model are not affected by the measurement process. In the linear case, the nonlinear parameter restrictions of the sampled model can be implemented with specialized Kalman filter software (e.g. LSDE) or with structural equations models (SEM) allowing such nonlinear parameter restrictions. In the nonlinear case, most filtering algorithms are formulated in discrete time, but mixed continuous-discrete approaches are also scattered in the literature. The Mathematica program SDE is a collection of algorithms with consequent focus on the mixed continuous-discrete case: continuous time updates combined with discrete time measurement updates. Included are the classical methods of extended Kalman filtering and higher order nonlinear filters, but also new developments such as the unscented Kalman filter (UKF) and the Gauss-Hermite filter (GHF) using approximations of the filter density. We also use the Edgeworth-Hermite expansion of probability densities to obtain generalized Gauss filters (GGHF) utilizing higher order moments such as skewness and kurtosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models

Biological processes measured repeatedly among a series of individuals are standardly analyzed by mixed models. These biological processes can be adequately modeled by parametric Stochastic Differential Equations (SDEs). We focus on the parametric maximum likelihood estimation of this mixed-effects model defined by SDE. As the likelihood is not explicit, we propose a stochastic version of the E...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

Stochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients

It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...

متن کامل

Parameter and State Estimation in Nonlinear Stochastic Continuous-Time Dynamic Models With Unknown Disturbance Intensity

Approximate Maximum Likelihood Estimation (AMLE) is an algorithm for estimating the states and parameters of models described by stochastic differential equations (SDEs). In previous work (Varziri et al., Ind. Eng. Chem. Res., 47(2), 380–393, (2008); Varziri et al., Comp. Chem. Eng., in press), AMLE was developed for SDE systems in which process-disturbance intensities and measurement-noise var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008