Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging

نویسندگان

  • Xuejun Qiu
  • Xinru You
  • Xing Chen
  • Haolin Chen
  • Arvind Dhinakar
  • Songhao Liu
  • Zhouyi Guo
  • Jun Wu
  • Zhiming Liu
چکیده

The rapid development of near-infrared surface-enhanced Raman scattering (NIR SERS) imaging technology has attracted strong interest from scientists and clinicians due to its narrow spectral bandwidth, low background interference, and deep imaging depth. In this report, the graphene oxide (GO)-wrapped gold nanorods (GO@GNRs) were developed as a smart and robust nanoplatform for ultrafast NIR SERS bioimaging. The fabricated GO@ GNRs could efficiently load various NIR probes, and the in vitro evaluation indicated that the nanoplatform could exhibit a higher NIR SERS activity in comparison with traditional gold nanostructures. The GOs were prepared by directly pyrolyzing citric acid for greater convenience, and GO@GNRs were fabricated via a facile synthesis strategy. Higher NIR SERS activity, facile synthesis method, excellent biocompatibility, and superb stability make the GO@GNRs/probe complex promising nanoprobes for NIR SERS-based bioimaging applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of functional gold nanorods for bioimaging and photothermal therapy

Gold nanorods have strong surface plasmon band at near-infrared light region, and are used as a photothermal converter. Since the near-infrared light penetrates into tissues deeply, it has been expected as a contrast agent for near infrared light bioimaging, a photosensitizer for photothermal therapy, and functional device for drug delivery system responding to near-infrared light irradiation. ...

متن کامل

Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy.

Near-infrared surface-enhanced Raman scattering (NIR SERS) imaging is now a promising molecular imaging technology due to its narrow spectral bandwidth, low background interference and deep imaging depth. In this work, we report a novel strategy for fabrication of NIR SERS nanoprobes without using any expensive and highly toxic organic dyes. Multifunctional conducting polymer (CP) materials, se...

متن کامل

[Theragnostic approaches using gold nanorods and near infrared light].

Gold nanoparticles have unique optical properties such as surface-plasmon and photothermal effects. Such properties have resulted in gold nanoparticles having several clinical applications. Gold nanorods (which are rod-shaped gold nanoparticles) show a surface plasmon band in the near-infrared region. They have therefore been proposed as contrast agents for bioimaging, or as heating devices for...

متن کامل

Plasmonic Gold Nanostars for Multi-Modality Sensing and Diagnostics

Gold nanostars (AuNSs) are unique systems that can provide a novel multifunctional nanoplatform for molecular sensing and diagnostics. The plasmonic absorption band of AuNSs can be tuned to the near infrared spectral range, often referred to as the "tissue optical window", where light exhibits minimal absorption and deep penetration in tissue. AuNSs have been applied for detecting disease bioma...

متن کامل

Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries

LiNi0.5Mn1.5O4 nanorods wrapped with graphene nanosheets have been prepared and investigated as high energy and high power cathode material for lithium-ion batteries. The structural characterization by X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy indicates the LiNi0.5Mn1.5O4 nanorods prepared from β-MnO2 nanowires have ordered spinel structure with P4332 sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017