Lipopolysaccharide disrupts the directional persistence of alveolar myofibroblast migration through EGF receptor.
نویسندگان
چکیده
Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification with decreased alveolar number and increased airspace size. Formation of alveoli involves a process known as secondary septation triggered by myofibroblasts. This study investigated the underlying mechanisms of altered lung morphogenesis in a rat model of BPD induced by intra-amniotic injection of lipopolysaccharide (LPS). Results showed that LPS disrupted alveolar morphology and led to abnormal localization of myofibroblasts in the lung of newborn rats, mostly in primary septa with few in secondary septa. To identify potential mechanisms, in vitro experiments were carried out to observe the migration behavior of myofibroblasts. The migration speed of lung myofibroblasts increased with LPS treatment, whereas the directional persistence decreased. We found that LPS induced activation of EGFR and overexpression of its ligand, TGF-α in myofibroblasts. AG1478, an EGFR inhibitor, abrogated the enhanced locomotivity of myofibroblasts by LPS and also increased the directional persistence of myofibroblast migration. Myofibroblasts showed a high asymmetry of phospho-EGFR localization, which was absent after LPS treatment. Application of rhTGF-α to myofibroblasts decreased the directional persistence. Our findings indicated that asymmetry of phospho-EGFR localization in myofibroblasts was important for cell migration and its directional persistence. We speculate that LPS exposure disrupts the asymmetric localization of phospho-EGFR, leading to decreased stability of cell polarity and final abnormal location of myofibroblasts in vivo, which is critical to secondary septation and may contribute to the arrested alveolar development in BPD.
منابع مشابه
Csk/Src/EGFR signaling regulates migration of myofibroblasts and alveolarization.
Bronchopulmonary dysplasia (BPD) is characterized by premature alveolar developmental arrest. Antenatal exposure to inflammation inhibits lung morphogenesis, thus increasing the risk of developing BPD. Alveolar myofibroblasts are thought to migrate into the septal tips and elongate secondary septa during alveolarization. Here we found lipopolysaccharide (LPS) disrupted the directional migration...
متن کاملAutocrine epidermal growth factor signaling stimulates directionally persistent mammary epithelial cell migration
Cell responses to soluble regulatory factors may be strongly influenced by the mode of presentation of the factor, as in matrix-bound versus diffusible modes. The possibly diverse effect of presenting a growth factor in autocrine as opposed to exogenous (or paracrine) mode is an especially important issue in cell biology. We demonstrate here that migration behavior of human mammary epithelial c...
متن کاملEpidermal growth factor alters fibroblast migration speed and directional persistence reciprocally and in a matrix-dependent manner.
Growth factors stimulate sustained cell migration as well as inducing select acute motility-related events such as membrane ruffling and disruption of focal adhesions. However, an in-depth understanding of the characteristics of sustained migration that are regulated by growth factor signals is lacking: how the biochemical signals are related to physical processes underlying locomotion, and how...
متن کاملType Iγ phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration
Phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) modulates a plethora of cytoskeletal interactions that control the dynamics of actin assembly and, ultimately, cell migration. We show that the type Igamma phosphatidylinositol phosphate kinase 661 (PIPKIgamma661), an enzyme that generates PI4,5P(2), is required for growth factor but not G protein-coupled receptor-stimulated directional migratio...
متن کاملThe tyrosine phosphatase SHP2 regulates focal adhesion kinase to promote EGF-induced lamellipodia persistence and cell migration.
The Src homology phosphotyrosyl phosphatase 2 (SHP2) is a positive effector of receptor tyrosine kinases (RTK) signaling. Furthermore, SHP2 is known to promote cell migration and invasiveness, key steps in cancer metastasis. To date, however, the mechanism by which SHP2 regulates cell movement is not fully understood. In the current report, a new role for SHP2 in regulating cell migration has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 302 6 شماره
صفحات -
تاریخ انتشار 2012