MS2PIP: a tool for MS/MS peak intensity prediction

نویسندگان

  • Sven Degroeve
  • Lennart Martens
چکیده

MOTIVATION Tandem mass spectrometry provides the means to match mass spectrometry signal observations with the chemical entities that generated them. The technology produces signal spectra that contain information about the chemical dissociation pattern of a peptide that was forced to fragment using methods like collision-induced dissociation. The ability to predict these MS(2) signals and to understand this fragmentation process is important for sensitive high-throughput proteomics research. RESULTS We present a new tool called MS(2)PIP for predicting the intensity of the most important fragment ion signal peaks from a peptide sequence. MS(2)PIP pre-processes a large dataset with confident peptide-to-spectrum matches to facilitate data-driven model induction using a random forest regression learning algorithm. The intensity predictions of MS(2)PIP were evaluated on several independent evaluation sets and found to correlate significantly better with the observed fragment-ion intensities as compared with the current state-of-the-art PeptideART tool. AVAILABILITY MS(2)PIP code is available for both training and predicting at http://compomics.com/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MS2PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation

We present an MS(2) peak intensity prediction server that computes MS(2) charge 2+ and 3+ spectra from peptide sequences for the most common fragment ions. The server integrates the Unimod public domain post-translational modification database for modified peptides. The prediction model is an improvement of the previously published MS(2)PIP model for Orbitrap-LTQ CID spectra. Predicted MS(2) sp...

متن کامل

Data and text mining MS2PIP: a tool for MS/MS peak intensity prediction

Motivation: Tandem mass spectrometry provides the means to match mass spectrometry signal observations with the chemical entities that generated them. The technology produces signal spectra that contain information about the chemical dissociation pattern of a peptide that was forced to fragment using methods like collision induced dissociation. The ability to predict these MS signals and to und...

متن کامل

MSPIP: a tool for MS/MS peak intensity prediction

Motivation: Tandem mass spectrometry provides the means to match mass spectrometry signal observations with the chemical entities that generated them. The technology produces signal spectra that contain information about the chemical dissociation pattern of a peptide that was forced to fragment using methods like collision-induced dissociation. The ability to predict these MS signals and to und...

متن کامل

MS-Simulator: predicting y-ion intensities for peptides with two charges based on the intensity ratio of neighboring ions.

For the identification of peptides with tandem mass spectrometry (MS/MS), many software tools rely on the comparison between an experimental spectrum and a theoretically predicted spectrum. Consequently, the accurate prediction of the theoretical spectrum from a peptide sequence can potentially improve the peptide identification performance and is an important problem for mass spectrometry base...

متن کامل

Identification of treatment efficacy-related host factors in chronic hepatitis C by ProteinChip serum analysis.

Recent development of proteomic array technology, including protein profiling coupling ProteinChip array with surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF/MS), provides a potentially powerful tool for discovery of new biomarkers by comparison of its profiles according to patient phenotypes. We used this approach to identify the host factors associated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 29 24  شماره 

صفحات  -

تاریخ انتشار 2013