Comparison of Standard and Zipf-Based Document Retrieval Heuristics
نویسنده
چکیده
Document retrieval is the task to retrieve from a possibly huge collection of documents those which are most similar to a given query document. In this paper, we present a new heuristic for inexact top K retrieval. It is similar to the well-known index elimination heuristic and is based on Zipf’s law, a statistical law observable in natural language texts. We compare the two heuristics with regard to retrieval performance and execution time. Therefore, we use a text collection consisting of scientific articles from various computer science conferences and journals. It turns out that our new approach is not better than index elimination. Interestingly, a combination of both heuristics yields the best results.
منابع مشابه
Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملHypergeometric Language Model and Zipf-Like Scoring Function for Web Document Similarity Retrieval
The retrieval of similar documents in the Web from a given document is different in many aspects from information retrieval based on queries generated by regular search engine users. In this work, a new method is proposed for Web similarity document retrieval based on generative language models and meta search engines. Probabilistic language models are used as a random query generator for the g...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کاملImproved Skips for Faster Postings List Intersection
Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...
متن کامل