Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator.

نویسندگان

  • Chengkuo Lee
  • Jayaraj Thillaigovindan
چکیده

We present in-depth discussion of the design and optimization of a nanomechanical sensor using a silicon cantilever comprising a two-dimensional photonic crystal (PC) nanocavity resonator arranged in a U-shaped silicon PC waveguide. For example, the minimum detectable strain, vertical deflection at the cantilever end, and force load are observed as 0.0133%, 0.37 mum, and 0.0625 muN, respectively, for a 30 mum long and 15 mum wide cantilever. In the graph of strain versus resonant wavelength shift, a rather linear relationship is observed for various data derived from different cantilevers. Both the resonant wavelength and the resonant wavelength shift of cantilevers under deformation or force loads are mainly a function of defect length change. Results point out that all these mechanical parameters are mainly dependent on the defect length of the PC nanocavity resonator. This new PC cantilever sensor shows promising linear characteristics as an optical nanomechanical sensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The New Design and Simulation of an Optical Add Drop Filter Based On Hexagonal Photonic Crystal Single Ring Race Track Resonator

In this paper, using annular resonator we have designed an adding and dropping filter light based ontwo-dimensional photonic crystals. The shape of ring resonator filter adding and dropping that wehave proposed is Race Track. This filter has a hexagonal lattice structure of silicon bars withrefractive index 3/46 that is located in the context of air with refractive index 1. Transmissionefficien...

متن کامل

Analysis of Protein Concentration Based on Photonic Crystal Ring Resonator

In this paper, homogeneous, wavelength shift biosensor is designed for sensing the protein concentration using two dimensional Photonic Crystal Ring Resonator (PCRR). The sensor is designed to monitor the protein concentration from 0% to 100%. The proposed sensor is composed of periodic Si rods embedded in an air host with a circular PCRR that is placed between the inline quasi waveguides. It i...

متن کامل

Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity

Silicon photonic crystal sensors have become very attractive for various optical sensing applications. Using silicon as a material platform provides the ability to fabricate sensors with other photonic devices on a single chip. In this paper, a new optical sensor based on optical resonance in a one-dimensional silicon photonic crystal with an air defect is theoretically studied for refractive i...

متن کامل

Add-Drop and Channel-Drop Optical Filters Based on Photonic Crystal Ring Resonators

Here, we propose an add-drop and a channel drop filter based on two-dimensional photonic crystal all circular ring resonators. These structures are made of a square lattice of silicon rods with the refractive index n1=3.464 surrounded by air (with refractive index n2=1). The broadest photonic band gap occurs at the filling ratio of r/a = 0.17. Two linear defect W1 waveguides couple to the ring....

متن کامل

Design of a new narrow band channel drop filter based on photonic crystal ring resonator

In this design an optical ring resonator are embedded between two Horizontal input and output waveguides which has 4 orbitals around the center of the resonator so that each orbital consists of 8 rods with different size in which radius of larger orbitals rods are bigger than radius of smaller orbitals rods. The analysis of simulation results showed the proposed filter has the transmission effi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 48 10  شماره 

صفحات  -

تاریخ انتشار 2009