A Riemannian symmetric rank-one trust-region method

نویسندگان

  • Wen Huang
  • Pierre-Antoine Absil
  • Kyle A. Gallivan
چکیده

The well-known symmetric rank-one trust-region method—where the Hessian approximation is generated by the symmetric rank-one update—is generalized to the problem of minimizing a real-valued function over a d-dimensional Riemannian manifold. The generalization relies on basic differential-geometric concepts, such as tangent spaces, Riemannian metrics, and the Riemannian gradient, as well as on the more recent notions of (first-order) retraction and vector transport. The new method, called RTR-SR1, is shown to converge globally and d + 1-step qsuperlinearly to stationary points of the objective function. A limited-memory version, referred to as LRTR-SR1, is also introduced. In this context, novel efficient strategies are presented to construct a vector transport on a submanifold of a Euclidean space. Numerical experiments— Rayleigh quotient minimization on the sphere and a joint diagonalization problem on the Stiefel manifold—illustrate the value of the new methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Implicit Riemannian Trust-Region Method for the Symmetric Generalized Eigenproblem

The recently proposed Riemannian Trust-Region method can be applied to the problem of computing extreme eigenpairs of a matrix pencil, with strong global convergence and local convergence properties. This paper addresses inherent inefficiencies of an explicit trustregion mechanism. We propose a new algorithm, the Implicit Riemannian Trust-Region method for extreme eigenpair computation, which s...

متن کامل

Shape-changing L-sr1 Trust-region Methods

In this article, we propose a method for solving the trust-region subproblem when a limited-memory symmetric rank-one matrix is used in place of the true Hessian matrix. The method takes advantage of two shape-changing norms to decompose the trust-region subproblem into two separate problems, one of which has a closed-form solution and the other one is easy to solve. Sufficient conditions for g...

متن کامل

Fixed-rank matrix factorizations and Riemannian low-rank optimization

Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and...

متن کامل

An implicit trust-region method on Riemannian manifolds§

We propose and analyze an “implicit” trust-region method in the general setting of Riemannian manifolds. The method is implicit in that the trust-region is defined as a superlevel set of the ρ ratio of the actual over predicted decrease in the objective function. Since this method potentially requires the evaluation of the objective function at each step of the inner iteration, we do not recomm...

متن کامل

A Riemannian geometry for low-rank matrix completion

We propose a new Riemannian geometry for fixed-rank matrices that is specifically tailored to the low-rank matrix completion problem. Exploiting the degree of freedom of a quotient space, we tune the metric on our search space to the particular least square cost function. At one level, it illustrates in a novel way how to exploit the versatile framework of optimization on quotient manifold. At ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2015