Incomplete inactivation and rapid recovery of voltage-dependent sodium channels during high-frequency firing in cerebellar Purkinje neurons.
نویسندگان
چکیده
Purkinje neurons can spike very rapidly for sustained periods. We examined the cycle of sodium channel gating during high-frequency firing of Purkinje neurons, focusing on the kinetics of sodium channel inactivation and recovery during and after spikes. To analyze sodium channel availability during spiking, we recorded the firing patterns of acutely dissociated Purkinje neurons in current clamp and used these records as command voltages in voltage-clamp experiments in the same cell, adding step depolarizations at various points to assay availability. Sodium channel availability decreased abruptly during the spike, as expected, but never reached zero. During spontaneous firing (∼ 40 Hz at 37°C), availability decreased from nearly 90% before the spike to about 10-20% after the spike. With fast steady firing stimulated by current injection (∼ 300 Hz at 37°C), the availability decreased from about 60% between spikes to roughly 15-20% after the spike. Thus even at the fastest firing rates, sodium channel inactivation is incomplete after a spike, leaving a substantial fraction of sodium channels immediately available for activation. Also, inactivation recovered quickly during the early interspike interval (time constant ∼ 1 ms at 37°C), but developed slowly during the depolarization of the late interspike interval, ensuring high availability until spike threshold. These features of sodium channel gating, especially the availability remaining after the spike, reduce the refractory period and facilitate rapid repetitive firing.
منابع مشابه
Incomplete inactivation and rapid recovery of voltage - dependent sodium 4 channels during high - frequency firing in cerebellar Purkinje neurons
1 2 3 Incomplete inactivation and rapid recovery of voltage-dependent sodium 4 channels during high-frequency firing in cerebellar Purkinje neurons 5 6 7 Brett C. Carter and Bruce P. Bean 8 9 10 Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, 11 MA 02115, USA. 12 13 14 Running head: Sodium channel gating during Purkinje cell firing 15 16 17 18 Correspondence: Br...
متن کاملResurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons.
Voltage-dependent sodium channels were studied in dissociated cerebellar Purkinje neurons from rats. In whole-cell recordings, a tetrodotoxin (TTX)-sensitive inward current was elicited when the membrane was repolarized to voltages between -60 and -20 mV after depolarizations to +30 mV long enough to produce maximal inactivation. At -40 mV, this "resurgent" current peaked in 8 msec and decayed ...
متن کاملResurgent Na currents in four classes of neurons of the cerebellum.
Action potential firing rates are generally limited by the refractory period, which depends on the recovery from inactivation of voltage-gated Na channels. In cerebellar Purkinje neurons, the kinetics of Na channels appear specialized for rapid firing. Upon depolarization, an endogenous open-channel blocker rapidly terminates current flow but prevents binding of the "fast" inactivation gate. Up...
متن کاملPower Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated
Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acety...
متن کاملThe contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study.
Purkinje neurons generate high-frequency action potentials and express voltage-gated, tetrodotoxin-sensitive sodium channels with distinctive kinetics. Their sodium currents activate and inactivate during depolarization, as well as reactivate during repolarization from positive potentials, producing a "resurgent" current. This reopening of channels not only generates inward current after each a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 105 2 شماره
صفحات -
تاریخ انتشار 2011