Relationship between inositol 1,4,5-trisphosphate receptor isoforms and subcellular Ca2+ signaling patterns in nonpigmented ciliary epithelia.

نویسندگان

  • K Hirata
  • M H Nathanson
  • A D Burgstahler
  • K Okazaki
  • E Mattei
  • M L Sears
چکیده

PURPOSE Subcellular Ca2+ signaling patterns, such as Ca2+ waves, gradients, and oscillations, are an important aspect of cell regulation, but the molecular basis for these signaling patterns is not understood. Because Ca2+ release patterns differ among isoforms of the inositol 1,4,5-trisphosphate (InsP3) receptor, the relationship between the distribution of these isoforms and subcellular Ca2+ signaling patterns in nonpigmented epithelial (NPE) cells was investigated. METHODS The distributions of the types I, II, and III InsP3 receptors were determined in NPE cells by immunofluorescence, and subcellular Ca2+ signaling patterns in these cells were examined by confocal line scanning microscopy. RESULTS The type I InsP3 receptor was concentrated at the basal pole of NPE cells, whereas the type III receptor was localized to the apical pole. The type II InsP3 receptor was not expressed in detectable amounts. Acetylcholine induced increases in Ca2+ that were mediated by InsP3, and these Ca2+ increases began as Ca2+ waves that were initiated at the apical pole, in the region of the type III InsP3 receptor. Acetylcholine occasionally induced sustained or repetitive Ca2+ increases that were prominent at the basal pole, in the region of the type I InsP3 receptor, but only subtle or absent apically. CONCLUSIONS Because the type I InsP3 receptor is thought to be responsible for repetitive Ca2+ release events, and the type III InsP3 receptor instead is suited to initiate Ca2+ signals, the subcellular distribution of these two isoforms corresponds to the Ca2+ signaling patterns observed in this cell type. Differential subcellular expression of InsP3 receptor isoforms may be an important molecular mechanism by which NPE cells organize their Ca2+ signals in space and time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentially distributed IP3 receptors and Ca2+ signaling in rod bipolar cells.

PURPOSE Inositol (1,4,5)-trisphosphate receptors (IP3Rs) contribute substantially to cytosolic free calcium ion (Ca2+) concentration transients and thereby modulate neuronal function. The present study was undertaken to determine the contribution of IP3Rs to the function of rod bipolar cells in the retina. METHODS Immunoreactivity for IP3Rs in rod bipolar cells from mouse retinas was detected...

متن کامل

Novel paracrine signaling mechanism in the ocular ciliary epithelium.

The ciliary body contains an epithelial bilayer consisting of an outer pigmented cell layer (PE) and an inner nonpigmented cell layer (NPE) responsible for aqueous humor secretion. Secretion may be mediated in part by cytosolic Ca2+ concentration ([Ca2+]i), but whether or how the two layers could coordinate their Ca2+ signals to regulate secretion is unclear. To investigate interactions between...

متن کامل

Regulation by Ca2+ and Inositol 1,4,5-Trisphosphate (Insp3) of Single Recombinant Type 3 Insp3 Receptor Channels

The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formati...

متن کامل

Apical Vesicles Bearing Inositol 1,4,5-trisphosphate Receptors in the Ca2+Initiation Site of Ductal Epithelium of Submandibular Gland

In polarized epithelial cells, agonists trigger Ca2+ waves and oscillations. These patterns may be caused by the compartmentalization of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools into specific regions. We have investigated the relationship between the distribution of IP3 receptors (IP3Rs) and the spatiotemporal pattern of Ca2+ signaling in the duct cells of the rat submandibular g...

متن کامل

Calpain cleavage of the B isoform of Ins(1,4,5)P3 3-kinase separates the catalytic domain from the membrane anchoring domain.

Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] is one of the key intracellular second messengers in cells and mobilizes Ca2+ stores in the ER (endoplasmic reticulum). Ins(1,4,5)P3 has a short half-life within the cell, and is rapidly metabolized through one of two pathways, one of which involves further phosphorylation of the inositol ring: Ins(1,4,5)P3 3-kinase (IP3-3K) phosphorylates Ins(1,4,5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 40 9  شماره 

صفحات  -

تاریخ انتشار 1999