Two systems for targeted gene deletion in Coxiella burnetii.
نویسندگان
چکیده
Coxiella burnetii is a ubiquitous zoonotic bacterial pathogen and the cause of human acute Q fever, a disabling influenza-like illness. C. burnetii's former obligate intracellular nature significantly impeded the genetic characterization of putative virulence factors. However, recent host cell-free (axenic) growth of the organism has enabled development of shuttle vector, transposon, and inducible gene expression technologies, with targeted gene inactivation remaining an important challenge. In the present study, we describe two methods for generating targeted gene deletions in C. burnetii that exploit pUC/ColE1 ori-based suicide plasmids encoding sacB for positive selection of mutants. As proof of concept, C. burnetii dotA and dotB, encoding structural components of the type IVB secretion system (T4BSS), were selected for deletion. The first method exploited Cre-lox-mediated recombination. Two suicide plasmids carrying different antibiotic resistance markers and a loxP site were integrated into 5' and 3' flanking regions of dotA. Transformation of this strain with a third suicide plasmid encoding Cre recombinase resulted in the deletion of dotA under sucrose counterselection. The second method utilized a loop-in/loop-out strategy to delete dotA and dotB. A single suicide plasmid was first integrated into 5' or 3' target gene flanking regions. Resolution of the plasmid cointegrant by a second crossover event under sucrose counterselection resulted in gene deletion that was confirmed by PCR and Southern blot. ΔdotA and ΔdotB mutants failed to secrete T4BSS substrates and to productively infect host cells. The repertoire of C. burnetii genetic tools now allows ready fulfillment of molecular Koch's postulates for suspected virulence genes.
منابع مشابه
Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain.
After repeated passages through embyronated eggs, the Nine Mile strain of Coxiella burnetii exhibits antigenic variation, a loss of virulence characteristics, and transition to a truncated lipopolysaccharide (LPS) structure. In two independently derived strains, Nine Mile phase II and RSA 514, these phenotypic changes were accompanied by a large chromosomal deletion (M. H. Vodkin and J. C. Will...
متن کاملMolecular investigation of Coxiella burnetii infections in aborted sheep in eastern Turkey
Q fever is a zoonotic disease that occurs worldwide and is caused by the obligate intracellular bacterium Coxiella burnetii. The aim of this study was to investigate the presence of C. burnetii infection in aborted sheep in eastern Turkey using PCR. A total of 200 fetuses were collected from aborted sheep belonging to 200 herds in different locations in the eastern part of Turkey. Foetal organ ...
متن کاملEssential role for the response regulator PmrA in Coxiella burnetii type 4B secretion and colonization of mammalian host cells.
Successful host cell colonization by the Q fever pathogen, Coxiella burnetii, requires translocation of effector proteins into the host cytosol by a Dot/Icm type 4B secretion system (T4BSS). In Legionella pneumophila, the two-component system (TCS) PmrAB regulates the Dot/Icm T4BSS and several additional physiological processes associated with pathogenesis. Because PmrA consensus regulatory ele...
متن کاملMicroevolution of the Chromosomal Region of Acute Disease Antigen A (adaA) in the Query (Q) Fever Agent Coxiella burnetii
The acute disease antigen A (adaA) gene is believed to be associated with Coxiella burnetii strains causing acute Q fever. The detailed analysis of the adaA genomic region of 23 human- and 86 animal-derived C. burnetii isolates presented in this study reveals a much more polymorphic appearance and distribution of the adaA gene, resulting in a classification of C. burnetii strains of better diff...
متن کاملClinical evaluation of a new PCR assay for detection of Coxiella burnetii in human serum samples.
A nested PCR method was developed for the detection of Coxiella burnetii in human serum samples. Two pairs of oligonucleotide primers were designed to amplify a 438-bp fragment of the com1 gene encoding a 27-kDa outer membrane protein of C. burnetii. The primers amplified the predicted fragments of 21 various strains of C. burnetii but did not react with DNA samples from other microorganisms. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 78 13 شماره
صفحات -
تاریخ انتشار 2012