TRANSLATIONAL PHYSIOLOGY Motor Neuron Firing Dysfunction in Spastic Patients With Primary Lateral Sclerosis

نویسندگان

  • Mary Kay Floeter
  • Ping Zhai
  • Rajiv Saigal
  • Yongkyun Kim
  • Jeffrey Statland
  • Mary Kay
چکیده

Floeter, Mary Kay, Ping Zhai, Rajiv Saigal, Yongkyun Kim, and Jeffrey Statland. Motor neuron firing dysfunction in spastic patients with primary lateral sclerosis. J Neurophysiol 94: 919–927, 2005. First published April 13, 2005; doi:10.1152/jn.00185.2005. Patients with corticospinal tract dysfunction have slow voluntary movements with brisk stretch reflexes and spasticity. Previous studies reported reduced firing rates of motor units during voluntary contraction. To assess whether this firing behavior occurs because motor neurons do not respond normally to excitatory inputs, we studied motor units in patients with primary lateral sclerosis, a degenerative syndrome of progressive spasticity. Firing rates were measured from motor units in the wrist extensor muscles at varying levels of voluntary contraction 10% maximal force. At each force level, the firing rate was measured with and without added muscle vibration, a maneuver that repetitively activates muscle spindles. In motor units from agematched control subjects, the firing rate increased with successively stronger contractions as well as with the addition of vibration at each force level. In patients with primary lateral sclerosis, motor-unit firing rates remained stable, or in some cases declined, with progressively stronger contractions or with muscle vibration. We conclude that excitatory inputs produce a blunted response in motor neurons in patients with primary lateral sclerosis compared with age-matched controls. The potential explanations include abnormal activation of voltage-activated channels that produce stable membrane plateaus at low voltages, abnormal recruitment of the motor pool, or tonic inhibition of motor neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motor neuron firing dysfunction in spastic patients with primary lateral sclerosis.

Patients with corticospinal tract dysfunction have slow voluntary movements with brisk stretch reflexes and spasticity. Previous studies reported reduced firing rates of motor units during voluntary contraction. To assess whether this firing behavior occurs because motor neurons do not respond normally to excitatory inputs, we studied motor units in patients with primary lateral sclerosis, a de...

متن کامل

آمیوتروفیک لترال اسکلروز با نقاب مالتیپل اسکلروز و واسکولوپاتی در MRI مغز

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by death of motor neurons leading to devastating muscle weakness and wasting and weight loss. It causes mixed picture of lower motor neuron (LMN) and upper motor neuron (UMN) dysfunction. The wide spectrums of atypical presentations can frequently lead to expensive work-up and undue delay in diagnosis o...

متن کامل

Disruption of Axonal Transport in Motor Neuron Diseases

Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in th...

متن کامل

Phenotypic and molecular analyses of primary lateral sclerosis

OBJECTIVE To understand phenotypic and molecular characteristics of patients with clinically "definite" primary lateral sclerosis (PLS) in a prospective study. METHODS Six sites enrolled 41 patients who had pure upper motor neuron dysfunction, bulbar symptoms, a normal EMG done within 12 months of enrollment, and onset of symptoms ≥5 years before enrollment. For phenotypic analyses, 27 demogr...

متن کامل

Retrograde labeling, transduction, and genetic targeting allow cellular analysis of corticospinal motor neurons: implications in health and disease

Corticospinal motor neurons (CSMN) have a unique ability to receive, integrate, translate, and transmit the cerebral cortex's input toward spinal cord targets and therefore act as a "spokesperson" for the initiation and modulation of voluntary movements that require cortical input. CSMN degeneration has an immense impact on motor neuron circuitry and is one of the underlying causes of numerous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005