Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries.

نویسنده

  • A L Betz
چکیده

Microvessel segments were isolated from rat brain and used for studies of hypoxanthine transport and metabolism. Compared to an homogenate of cerebral cortex, the isolated microvessels were 3.7-fold enriched in xanthine oxidase. Incubation of the isolated microvessels with labeled hypoxanthine resulted in its rapid uptake followed by the slower accumulation of hypoxanthine metabolites including xanthine and uric acid. The intracellular accumulation of these metabolites was inhibited by the xanthine oxidase inhibitor allopurinol. Hypoxanthine transport into isolated capillaries was inhibited by adenine but not by representative pyrimidines or nucleosides. Similar results were obtained when blood to brain transport of hypoxanthine in vivo was measured using the intracarotid bolus injection technique. Thus, hypoxanthine is transported into brain capillaries by a transport system shared with adenine. Once inside the cell, hypoxanthine can be metabolized to xanthine and uric acid by xanthine oxidase. Since this reaction leads to the release of oxygen radicals, it is suggested that brain capillaries may be susceptible to free radical mediated damage. This would be most likely to occur in conditions where the brain hypoxanthine concentration is increased as following ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

The characteristics of nucleobase transport and metabolism by the perfused sheep choroid plexus.

The uptake of nucleobases was investigated across the basolateral membrane of the sheep choroid plexus perfused in situ. The maximal uptake (U(max)) for hypoxanthine and adenine, was 35.51+/-1.50% and 30.71+/-0.49% and for guanine, thymine and uracil was 12.00+/-0.53%, 13.07+/-0.48% and 12.30+/-0.55%, respectively with a negligible backflux, except for that of thymine (35.11+/-5.37% of the U(ma...

متن کامل

Summer Savory (Satureja hortensis) Extract Inhibits Xanthine Oxidase

Xanthine oxidase plays crucial roles in the production of reactive oxygen species (ROS), and uric acid in blood which may lead to gout, one of the oldest known forms of arthritis amongst humans. Summer savory (Satureja hortensis L.) a medicinal/spice exhibits antioxidant activity, but unknown effects on xanthine oxidase activity. Here, for the first time, we examined the effects of S. hortensis...

متن کامل

Plasma Xanthine Oxidase Activity in Patients With Adult Respiratory Distress Syndrome

Oxygen metabolites have been implicated in the pathogenesis of various types of acute tissue injury. One biologic source of oxygen metabolites is the reaction catalyzed by the enzyme xanthine oxidase. Because we previously demonstrated that the substrates for xanthine oxidase (hypoxanthine and xanthine) are elevated in the plasma of critically il l patients, we questioned whether the enzyme its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 44 2  شماره 

صفحات  -

تاریخ انتشار 1985