Global Well-posedness of Nls-kdv Systems for Periodic Functions

نویسنده

  • CARLOS MATHEUS
چکیده

We prove that the Cauchy problem of the Schrödinger-KortewegdeVries (NLS-KdV) system for periodic functions is globally well-posed for initial data in the energy space H1×H1. More precisely, we show that the nonresonant NLS-KdV system is globally well-posed for initial data in Hs(T) × Hs(T) with s > 11/13 and the resonant NLS-KdV system is globally wellposed with s > 8/9. The strategy is to apply the I-method used by Colliander, Keel, Staffilani, Takaoka and Tao. By doing this, we improve the results by Arbieto, Corcho and Matheus concerning the global well-posedness of NLSKdV systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 9 N ov 2 00 5 GLOBAL WELL - POSEDNESS FOR A NLS - KDV SYSTEM ON T

We prove that the Cauchy problem of the Schrödinger Korteweg deVries (NLS-KdV) system on T is globally well-posed for initial data (u0, v0) below the energy space H × H. More precisely, we show that the non-resonant NLS-KdV is globally wellposed for initial data (u0, v0) ∈ H (T)× H(T) with s > 11/13 and the resonant NLS-KdV is globally well-posed for initial data (u0, v0) ∈ H (T)×H(T) with s > ...

متن کامل

Sharp Global Well - Posedness for Kdv and Modified Kdv On

The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...

متن کامل

Multilinear Estimates for Periodic Kdv Equations, and Applications

We prove an endpoint multilinear estimate for the X spaces associated to the periodic Airy equation. As a consequence we obtain sharp local well-posedness results for periodic generalized KdV equations, as well as some global well-posedness results below the energy norm.

متن کامل

Local Well-posedness for the Periodic Korteweg-de Vries Equation in Analytic Gevrey Classes

Motivated by the work of Grujić and Kalisch, [Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations 15 (2002) 1325–1334], we prove the local well-posedness for the periodic KdV equation in spaces of periodic functions analytic on a strip around the real axis without shrinking the width of...

متن کامل

Diophantine Conditions in Well-posedness Theory of Coupled Kdv-type Systems: Local Theory

We consider the local well-posedness problem of a one-parameter family of coupled KdV-type systems both in the periodic and non-periodic setting. In particular, we show that certain resonances occur, closely depending on the value of a coupling parameter α when α 6= 1. In the periodic setting, we use the Diophantine conditions to characterize the resonances, and establish sharp local well-posed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006