Join-semilattices with Two-dimensional Congruence Amalgamation
نویسندگان
چکیده
We say that a 〈∨, 0〉-semilattice S is conditionally co-Brouwerian, if (1) for all nonempty subsets X and Y of S such that X ≤ Y (i.e., x ≤ y for all 〈x, y〉 ∈ X × Y ), there exists z ∈ S such that X ≤ z ≤ Y , and (2) for every subset Z of S and all a, b ∈ S, if a ≤ b ∨ z for all z ∈ Z, then there exists c ∈ S such that a ≤ b ∨ c and c ≤ Z. By restricting this definition to subsets X , Y , and Z of less than κ elements, for an infinite cardinal κ, we obtain the definition of a conditionally κco-Brouwerian 〈∨, 0〉-semilattice. We prove that for every conditionally co-Brouwerian lattice S and every partial lattice P , every 〈∨, 0〉-homomorphism φ : Conc P → S can be lifted to a lattice homomorphism f : P → L, for some relatively complemented lattice L. Here, Conc P denotes the 〈∨, 0〉-semilattice of compact congruences of P . We also prove a two-dimensional version of this result, and we establish partial converses of our results and various of their consequences in terms of congruence lattice representation problems. Among these consequences, for every infinite regular cardinal κ and every conditionally κ-co-Brouwerian S of size κ, there exists a relatively complemented lattice L with zero such that Conc L ∼= S.
منابع مشابه
Ja n 20 05 REPRESENTATION OF ALGEBRAIC DISTRIBUTIVE LATTICES WITH א 1 COMPACT ELEMENTS AS IDEAL LATTICES OF REGULAR RINGS
We prove the following result: Theorem. Every algebraic distributive lattice D with at most א1 compact elements is isomorphic to the ideal lattice of a von Neumann regular ring R. (By earlier results of the author, the א1 bound is optimal.) Therefore, D is also isomorphic to the congruence lattice of a sectionally complemented modular lattice L, namely, the principal right ideal lattice of R. F...
متن کاملRepresentation of algebraic distributive lattices with א 1 compact elements as ideal lattices of regular rings
We prove the following result: Theorem. Every algebraic distributive lattice D with at most א1 compact elements is isomorphic to the ideal lattice of a von Neumann regular ring R. (By earlier results of the author, the א1 bound is optimal.) Therefore, D is also isomorphic to the congruence lattice of a sectionally complemented modular lattice L, namely, the principal right ideal lattice of R. F...
متن کاملCongruence Lattices of Semilattices with Operators
We begin by recalling the general theory of adjoints on finite semilattices. A finite join semilattice with 0 is a lattice, with the naturally induced meet operation. Thus a finite lattice S can be regarded as a semilattice in two ways, either S = 〈S,+, 0〉 or S = 〈S,∧, 1〉. Given a (+, 0)-homomorphism g : S → T , define the adjoint h : T → S by h(t) = ∑ {s ∈ S : gs ≤ t} so that gs ≤ t iff s ≤ ht...
متن کاملCongruence lattices of pseudocomplemented semilattices
Congruence lattices of algebras in various varieties have been studied extensively in the literature. For example, congruence lattices (i.e. lattices of ideals) of Boolean algebras were characterized by Nachbin [18] (see also Gratzer [9] and Jonsson [16]) while congruence lattices of semilattices were investigated by Papert [19], Dean and Oehmke [4] and others. In this paper we initiate the inv...
متن کاملSemilattices with Sectionally Antitone Bijections
We study ∨-semilattices with the greatest element 1 where on each interval [a,1] an antitone bijection is defined. We characterize these semilattices by means of two induced binary operations proving that the resulting algebras form a variety. The congruence properties of this variety and the properties of the underlying semilattices are investigated. We show that this variety contains a single...
متن کامل