Spatial and molecular organization of lymph node T cell cortex: a labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membrane-like extracellular matrix.
نویسندگان
چکیده
Naive T cells encounter antigen-presenting cells within the cortex of lymph nodes to initiate primary immune responses. Within this T cell cortex is the reticular network (RN)--a system of collagen fibers and extracellular matrix (ECM) wrapped by fibroblastic reticular cells (FRC). We have investigated the distribution of various molecules, including ECM proteins and proteoglycans, in the T cell cortex of both human and rodent lymph node. We confirm and extend reports of matrix elements in the RN. In addition, we find that staining for the laminin-alpha3 chain and for tenascin reveals a 'hollow' reticular pattern, consistent with localization to the basement membrane-like covering of reticular fibers. In contrast, keratan sulfate is observed in a fine linear pattern within the RN, suggesting it is localized to the core of the fibers. Staining with the marker ER-TR7 indicates that FRC cover all identifiable ECM surfaces of the T cell cortex. Based on these findings and previous reports, we conclude that cortical lymphocytes migrate within a 'labyrinthine cavity' free of fibrillar ECM, distinguishing the T cell cortex from other loose connective tissues, and that the FRC lining of the cavity constitutes an epithelium-like boundary. We propose that this spatial organization facilitates ameboid leukocyte crawling along preformed paths of least resistance and that the basement membrane-like ECM of the FRC may facilitate fluid transport within the RN by limiting leakage from the fiber.
منابع مشابه
Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle.
The connective tissue of any organ in the body is generally referred to as stroma. This complex network is commonly composed of leukocytes, extracellular matrix components, mesenchymal cells, and a collection of nerves, blood, and lymphoid vessels. Once viewed primarily as a structural entity, stromal cells of mesenchymal origin are now being intensely examined for their ability to directly reg...
متن کاملLymph-Borne Chemokines and Other Low Molecular Weight Molecules Reach High Endothelial Venules via Specialized Conduits While a Functional Barrier Limits Access to the Lymphocyte Microenvironments in Lymph Node Cortex
Lymph-borne, soluble factors (e.g., chemokines and others) influence lymphocyte recirculation and endothelial phenotype at high endothelial venules (HEVs) in lymph node cortex. Yet the route lymph-borne soluble molecules travel from the subcapsular sinus to the HEVs is unclear. Therefore, we injected subcutaneously into mice and rats a wide variety of fluorophore-labeled, soluble molecules and ...
متن کاملLymph Node Fibroblastic Reticular Cells Construct the Stromal Reticulum via Contact with Lymphocytes
The sophisticated microarchitecture of the lymph node, which is largely supported by a reticular network of fibroblastic reticular cells (FRCs) and extracellular matrix, is essential for immune function. How FRCs form the elaborate network and remodel it in response to lymphocyte activation is not understood. In this work, we established ERTR7(+)gp38(+)VCAM-1(+) FRC lines and examined the produ...
متن کاملEffects of T-2 Toxin on Cytokine Produc-tion by Mice Peritoneal Macrophages and Lymph Node T-Cells
Background: T-2 toxin is a mycotoxin of type A trichothecenes produced by several fungal genera such as Fusarium species. Mycotoxins can affect both cell mediated and humoral immune compartments. Objective: The purpose of this study was to investi-gate the effect of T-2 toxin on cytokine production by mouse peritoneal macrophages and lymph node T cells. Methods: Mouse peritoneal macrophages and...
متن کاملMorphology and Ultrastructure of Mouse Polarized Endometrial Epithelial Cell Monolyer in Vitro
Purpose: The objective for this study is to investigate the morphology and ultrastructure of mouse endometrial epithelial cell monolayer cultured on matrigel in dual-chambered system as an in vitro mouse endometrial epithelial cell culture model that mimics structural and functional properties of the endometrial epithelium in vivo. Materials and Methods: Mouse endometrial epithelial cells were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International immunology
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2001