Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices

نویسندگان

  • Molly R. Krogstad
  • Sungmo Ahn
  • Wounjhang Park
  • Juliet T. Gopinath
چکیده

Single-mode Ge28Sb12Se60 strip waveguides, fabricated with thermal evaporation and lift-off, were demonstrated at 1.03 μm. The linear and nonlinear optical properties of these waveguides were shown to be similar to bulk samples, with differences attributed to small variations in composition of ~4 atomic % or less. From z-scan measurements at 1.03 μm using circularly polarized, ~200 fs pulses at 374 kHz, Ge28Sb12Se60 was found to have a nonlinear refractive index ~130 x fused silica and a twophoton absorption coefficient of 3.5 cm/GW. Given the large two-photon absorption coefficient, this material shows promise for optical limiting applications at 1 μm. ©2015 Optical Society of America OCIS codes: (160.2750) Glass and other amorphous materials; (160.4330) Nonlinear optical materials; (190.4390) Nonlinear optics, integrated optics; (230.7380) Waveguides, channeled. References and links 1. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000). 2. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in ultrashort pulse generation: Pushing the limits in linear and nonlinear optics,” Science 286(5444), 1507–1512 (1999). 3. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). 4. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008). 5. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011). 6. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003). 7. P. Klocek and L. Columbo, “Index of refraction, dispersion, bandgap, and light scattering in GeSe and GeSbSe glasses,” J. Non-Cryst. Solids 93(1), 1–16 (1987). 8. P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, Inc., 1991). 9. K. Ogusu, K. Suzuki, and H. Nishio, “Simple and accurate measurement of the absorption coefficient of an absorbing plate by use of the Brewster angle,” Opt. Lett. 31(7), 909–911 (2006). 10. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Optical limiting behavior of infrared chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4(3), 729–735 (2002). 11. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). 12. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003). 13. B. Gu, W. Ji, and X.-Q. Huang, “Analytical expression for femtosecond-pulsed z scans on instantaneous nonlinearity,” Appl. Opt. 47(9), 1187–1192 (2008). 14. R. W. Boyd, Nonlinear Optics (Academic Press, 2009). 15. M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A, Pure Appl. Opt. 1(6), 662–667 (1999). 16. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett. 28(15), 1365–1367 (2003). 17. M. Hass, J. W. Davisson, H. B. Rosenstock, and J. Babiskin, “Measurement of very low absorption coefficients by laser calorimetry,” Appl. Opt. 14(5), 1128–1130 (1975). 18. Vitron IG-5 Datasheet, http://www.vitron.de/datasheets/VITRON%20IG-5%20Datenblatt%20Jan%202015.pdf. #228920 $15.00 USD Received 3 Dec 2014; revised 4 Mar 2015; accepted 4 Mar 2015; published 18 Mar 2015 © 2015 OSA 23 Mar 2015 | Vol. 23, No. 6 | DOI:10.1364/OE.23.007870 | OPTICS EXPRESS 7870 19. Schott Infrared Chalcogenide Glasses Datasheet, http://www.schott.com/advanced_optics/english/download/schott-infrared-chalcog-glasses-family-sheet-october2013-eng.pdf. 20. K. Shinkawa and K. Ogusu, “Pulse-width dependence of optical nonlinearities in As2Se3 chalcogenide glass in the picosecond-to-nanosecond region,” Opt. Express 16(22), 18230–18240 (2008). 21. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008). 22. M. Olivier, J. C. Tchahame, P. Nĕmec, M. Chauvet, V. Besse, C. Cassagne, G. Boudebs, G. Renversez, R. Boidin, E. Baudet, and V. Nazabal, “Structure, nonlinear properties, and photosensitivity of (GeSe2)100-x(Sb2Se3)x glasses,” Opt. Mater. Express 4(3), 525–540 (2014). 23. K. Tanaka and H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. NonCryst. Solids 198–200(1), 714–718 (1996). 24. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014). 25. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17–19 (1964). 26. M. Sheik-Bahae, D. Crichton Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991). 27. Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, and G. Chen, “Large and opposite changes of the third-order optical nonlinearities of chalcogenide glasses by femtosecond and continuous-wave laser irradiation,” Appl. Phys. Lett. 91(18), 1–3 (2007). 28. W. Liu, Q. Zhang, L. Liu, L. Xu, Y. Xu, and G. Chen, “Enhancement of second-order optical nonlinearity in photo-darkened Ge25Sb10S65 chalcogenide glass by femtosecond laser light,” Opt. Commun. 282(10), 2081–2084 (2009). 29. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009). 30. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995). 31. A. V. Kolovov, H. Oyanagi, K. Tanaka, and K. Tanaka, “Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997). 32. A. V. Kolobov, H. Oyanagi, A. Roy, and K. Tanaka, “A nanometer scale mechanism for the reversible photostructural change in amorphous chalcogenides,” J. Non-Cryst. Solids 232–234(1), 80–85 (1998). 33. R. M. Almeida, L. F. Santos, A. Simens, A. Ganjoo, and H. Jain, “Structural heterogeneity in chalcogenide glass films prepared by thermal evaporation,” J. Non-Cryst. Solids 353(18–21), 2066–2068 (2007). 34. A. Ureña, A. Piarristeguy, M. Fontana, C. Vigreux-Bercovici, A. Pradel, and B. Arcondo, “Characterisation of thin films obtained by laser ablation of Ge28Se60Sb12 glasses,” J. Phys. Chem. Solids 68(5–6), 993–997 (2007). 35. V. Balan, C. Vigreux, and A. Pradel, “Chalcogenide thin films deposited by radio-frequency sputtering,” J. Optoelectron. Adv. Mater. 6(3), 875–882 (2004). 36. J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOScompatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007). 37. M. Popovic, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” in Integrated Photonics Research, Vol. 91 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper ITuD4. 38. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994). 39. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullinm, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005). 40. T.-K. Liang and H.-K. Tsang, “Nonlinear absorption and raman scattering in silicon-on-insulator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1149–1153 (2004). 41. F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1–3), 232–237 (2000). 42. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102(8), 083101 (2007). 43. J.-F. Lami, P. Gilliot, and C. Hirlimann, “Observation of interband two-photon absorption saturation in CdS,” Phys. Rev. Lett. 77(8), 1632–1635 (1996). 44. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear characterization of Ge₂₈Sb₁₂Se₆₀ bulk and waveguide devices.

Single-mode Ge₂₈Sb₁₂Se₆₀ strip waveguides, fabricated with thermal evaporation and lift-off, were demonstrated at 1.03 µm. The linear and nonlinear optical properties of these waveguides were shown to be similar to bulk samples, with differences attributed to small variations in composition of ~4 atomic % or less. From z-scan measurements at 1.03 µm using circularly polarized, ~200 fs pulses at...

متن کامل

Optical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings

Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...

متن کامل

Nonlinear Integrated Optics with Periodically Poled Waveguides in LiNbO3

The advent of the electric field poling method to fabricate periodically poled, ferroelectric, nonlinear optical materials resulted in a renaissance of nonlinear optics. Since then quasi-phase matching has been used for efficient wavelength conversion in devices like frequency doublers, difference frequency generators (DFG) and optical parametric oscillators (OPO). Periodically poled Lithium Ni...

متن کامل

Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates

An increasing number of systems and applications depend on photonics for transmission and signal processing. This includes data centers, communications systems, environmental sensing, radar, lidar, and microwave signal generation. Such systems increasingly rely on monolithic integration of traditionally bulk optical components onto the chip scale to significantly reduce power and cost while sim...

متن کامل

Fabrication of smooth silicon optical devices using proton beam writing

This work gives a brief review of proton beam writing and electrochemical etching process for the fabrication of smooth optical devices in bulk silicon. Various types of structures such as silicon-on-oxidized porous silicon waveguides, waveguide grating and disk resonators have been produced. Optical characterization has been carried out on the waveguides for both TE and TM polarization using f...

متن کامل

Guiding Light for Future Technologies SPATIAL OPTICAL SOLITONS

1047-6938/02/02/0059/5-$0015.00 © Optical Society of America One of the goals of modern nonlinear optics is the development of the ultimate fast, all-optical device in which light can be used to control light. The unique possibilities of reconfigurable circuits created in nonlinear bulk media without any fabricated optical waveguide can be achieved by employing the fundamental concept of light ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015