Time and Frequency Transfer in Optical Fibers
نویسنده
چکیده
The development towards more services in the digital domain, based on computers and server logs at different locations and in different networks, increases the need for high precision time indication. Even though GPS can support this with sufficient precision, many users do not have access to outdoor antennas. Furthermore, there is vulnerability in the weak radio-transmission from the satellites (NSTAC) as well as the dependence on the continuous replacement of old and outdated satellites (Chaplain). Therefore, alternative systems to support precise time are needed. Standardization of time transfer of a master clock is done for example in the IRIG system, but this one-way time transfer system do not take variations in transfer time into account, mainly because it is supposed to work on short distances (IRIG). In additional efforts to meet this request, several time and frequency transfer methods using optical fibers have been developed or are under development, using dedicated fibers (Kihara; Jefferts; Ebenhag2008; Kéfélian), dedicated capacity in existing fiber networks (Calhoun) or already existing synchronization in active fiber networks (Emardson, Ebenhag2010a). A similarity of all these techniques is the need for two-way communication to compensate for the inevitable variations of propagation time, such as variation of temperature and mechanical stress along the transmission path. A two-way connection may however be undesirable when many users are connected in one network, or when user privacy is requested. As an alternative, a one-way transmission over fiber optic wavelength division multiplexing network with detection of variation in propagation time has been presented (Ebenhag2010b, Hanssen). The general conception of fiber optic communication is the transmission of digital data from one user to another, and through recovery of the phase variation of the bit-slots after reception, the exact time it has taken to transfer the data is of low importance. The individual packets of the data may even follow different paths with different propagation time, and still be interpreted correctly at the user end. Physical effects such as noise, dispersion and polarization dependence are important, but as long as each bit can be detected correctly, slow variations in propagation time do not affect the communication. When the fiber is used to transmit time or frequency however, the physical properties of the transmission link become very important. Even though time and frequency may appear as two faces of the same parameter, there are differences in the requirement of a transmission link. For time transfer, any variations in the delay through the link must be compensated for, either in a real time compensator or through post processing. For frequency transfer, the frequency shift caused by the rapidity of a change in the fiber delay must be handled.
منابع مشابه
Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications
Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...
متن کاملHigh-stability transfer of an optical frequency over long fiber-optic links
We present theoretical predictions and experimental measurements for the achievable phase noise, timing jitter, and frequency stability in the coherent transport of an optical frequency over a fiber-optic link. Both technical and fundamental limitations to the coherent transfer are discussed. Measurements of the coherent transfer of an optical carrier over links ranging from 38 to 251 km demons...
متن کاملFabrication of polymer-SiO2 nanocomposite optical fibers with a new method
At first step polymer optical fibers (POFs) are used in short distance for optical data transmissions. At second step SiO2 nanoparticles were prepared by sonochemical-assisted method. Silica nanoparticles were added to polymer matrix to prepare polymer based nanocomposites. Most of the POF applications are in the medical and electrical devices. There are several methods for fabrication of POFs,...
متن کاملPropose of a novel method to simulate and optimize a polymer optical fiber daylighting system
Optical fiber day lighting systems help the efficiency of using solar energy in the lighting system in domestic, industrial and agricultural sectors. A lot of work has been done on these systems, but the lack of a reliable simulation method to reduce the tolerance, time and cost is evident. In this regard, in this paper, a novel method based on two powerful Optifiber and Zemax software has bee...
متن کاملTime and Frequency Transfer Using Asynchronous Fiber-optical Networks: Progress Report
SP Technical Research Institute of Sweden has since 2004 been running a project with the aim of performing time and frequency transfer using commercial asynchronous fiberoptical networks. The project is motivated by the need for an alternative and complementary time transfer method on a national basis with the goal of reaching accuracy and stability comparable to satellite-based methods. Previo...
متن کاملEvaluation of Time Transfer Units for Time and Frequency Transfer in Optical Fibers Utilizing a Passive Technique Based on SONET/SDH
The time transfer method of using passive listening and detection of SDH frame headers in fiberoptical networks has been presented earlier. Previous results, using commercialized equipment and commercial fiber-links, have shown that time transfer with a precision of the order of a few nanoseconds is possible over links with network distances exceeding 1100 km. The motivation of the work has bee...
متن کامل