Fibronectin signaling stimulates BNP gene transcription by inhibiting neuron-restrictive silencer element-dependent repression.
نویسندگان
چکیده
OBJECTIVE Brain natriuretic peptide (BNP) is a cardiac hormone mainly synthesized in ventricles and its expression is markedly increased in ventricular hypertrophy that involves the accumulation of extracellular matrix proteins, such as fibronectin (Fn). We recently reported that Fn signaling stimulated BNP secretion accompanied by hypertrophic responses in vitro. METHODS To elucidate the regulatory mechanism for BNP gene transcription, we examined cis-acting elements downstream of Fn signaling in rat ventricular myocytes transfected with either the -1812 human BNP-luciferase reporter gene (-1812hBNP/Luc) or one of several truncated forms. RESULTS A strong cis-repressor element was identified between -552 and -522 in myocytes plated on uncoated dishes. This region contains a neuron-restrictive silencer element (NRSE)-like element (NRSE(BNP)) that is 90% homologous with the NRSE consensus sequence. Neuron-restrictive silencer factor (NRSF) is known to bind to NRSE and to silence transcription of genes containing NRSE. Deletion of NRSE(BNP) and dominant negative NRSF markedly increased the reporter activity in transfected cells, suggesting that the NRSE/NRSF system silences basal BNP gene transcription. When myocytes were cultured on Fn-coated dishes, the reporter activity of -1812hBNP/Luc was increased by approximately 600% compared with that on uncoated dishes. Interestingly, truncation from -552 to -522 reduced the Fn-inducible reporter activity. Moreover, deletion of NRSE(BNP) and dominant negative NRSF also inhibited the Fn-inducible reporter activity. Electrophoretic mobility shift assays showed that Fn signaling inhibited the binding activity of NRSF to NRSE(BNP). CONCLUSION These results suggest that Fn-induced BNP up-regulation in rat ventricular myocytes is due to inhibition of NRSE(BNP)-dependent repression of BNP gene transcription.
منابع مشابه
Protein kinase A regulates cholinergic gene expression in PC12 cells: REST4 silences the silencing activity of neuron-restrictive silencer factor/REST.
The role of protein kinase A in regulating transcription of the cholinergic gene locus, which contains both the vesicular acetylcholine transporter gene and the choline acetyltransferase gene, was investigated in PC12 cells and a protein kinase A-deficient PC12 mutant, A126.1B2, in which transcription of the gene is reduced. The site of action of protein kinase A was localized to a neuron-restr...
متن کاملTranscriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex.
A large number of neuron-specific genes characterized to date are under the control of negative transcriptional regulation. Many promoter regions of neuron-specific genes possess the repressor element repressor element 1/neuron-restrictive silencing element (RE1/NRSE). Its cognate binding protein, REST/NRSF, is an essential transcription factor; its null mutations result in embryonic lethality,...
متن کاملIdentification of a novel repressive element that contributes to neuron-specific gene expression.
Multiple signaling pathways are thought to control the selective expression of genes over the course of neuronal differentiation. One approach to elucidating these pathways is to identify specific cis-acting elements that serve as the final targets for these signaling pathways in neural-specific genes. We now identify a novel repressive element from the growth-associated protein 43 (GAP-43) gen...
متن کاملNon-Coding RNAs in Neural Networks, REST-Assured
In the nervous system, several key steps in cellular complexity and development are regulated by non-coding RNAs (ncRNAs) and the repressor element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF). REST recruits gene regulatory complexes to regulatory sequences, among them the repressor element-1/neuron-restrictive silencer element, and mediates developmental sta...
متن کاملWidespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease.
Huntingtin is a protein that is mutated in Huntington's disease (HD), a dominant inherited neurodegenerative disorder. We previously proposed that, in addition to the gained toxic activity of the mutant protein, selective molecular dysfunctions in HD may represent the consequences of the loss of wild-type protein activity. We first reported that wild-type huntingtin positively affects the trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2002