Nano-sized Superlattice Clusters Created by Oxygen Ordering in Mechanically Alloyed Fe Alloys

نویسندگان

  • Yong-Jie Hu
  • Jing Li
  • Kristopher A. Darling
  • William Y. Wang
  • Brian K. VanLeeuwen
  • Xuan L. Liu
  • Laszlo J. Kecskes
  • Elizabeth C. Dickey
  • Zi-Kui Liu
چکیده

Creating and maintaining precipitates coherent with the host matrix, under service conditions is one of the most effective approaches for successful development of alloys for high temperature applications; prominent examples include Ni- and Co-based superalloys and Al alloys. While ferritic alloys are among the most important structural engineering alloys in our society, no reliable coherent precipitates stable at high temperatures have been found for these alloys. Here we report discovery of a new, nano-sized superlattice (NSS) phase in ball-milled Fe alloys, which maintains coherency with the BCC matrix up to at least 913 °C. Different from other precipitates in ferritic alloys, this NSS phase is created by oxygen-ordering in the BCC Fe matrix. It is proposed that this phase has a chemistry of Fe3O and a D03 crystal structure and becomes more stable with the addition of Zr. These nano-sized coherent precipitates effectively double the strength of the BCC matrix above that provided by grain size reduction alone. This discovery provides a new opportunity for developing high-strength ferritic alloys for high temperature applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Characterization and Ordering Transformation of Mechanically Alloyed Nanocrystalline Fe-28Al Powder

The synthesis of nanocrystalline Fe3Al powder by mechanical alloying as well as the structural ordering of the synthesized Fe3Al particles during the subsequent thermal analysis were investigated. Mechanical alloying was performed up to 100 hours using a planetary ball mill apparatus with rotational speed of 300 rpm under argon atmosphere at ambient temperature. The synthesized powders were cha...

متن کامل

XANES of Mechanically Alloyed Y-Fe System

We have measured X-ray absorption near edge structure (XANFS) of mechanically alloyed YzFe and YFez system as a fundion of milling time. An amorphous phase is obtained by mechanical alloying for 100 hours in the YzFe system and for 500 hours in the YFez system. In both systems the intensity of Fe Is-4pn transition grows up significantly with increasing the milling time and approaches to that of...

متن کامل

Local Structures of Mechanically Alloyed Al70Cu20Fe10 Nanocomposites Studied by XRD and XAFS

Ternary Al70Cu20Fe10 alloy nano-composites prepared by mechanical alloying are characterized by X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results indicate that after milled for 10 hours, the coordination environment around Cu atoms is changed largely and becomes disordered, but the local structure of Fe atoms still remains as that of α-Fe. This indicates the formin...

متن کامل

Relation between Ga ordering and magnetostriction of Fe-Ga alloys studied by x-ray diffuse scattering

Transmission synchrotron diffraction was employed to characterize the Ga ordering in magnetostrictive Fe 100−x Ga x alloys with Ga concentrations from 0 to 20.3 at. %. The experiments focused on the development of atomic short-range ordering ͑SRO͒ by analysis of the diffuse scattering appearing at superlattice positions of the D0 3 ordered alloy structure. No SRO was found for Ga concentrations l...

متن کامل

Reversible attachment of platinum alloy nanoparticles to nonfunctionalized carbon nanotubes.

The formation of monodisperse, tunable sized, alloyed nanoparticles of Ni, Co, or Fe with Pt and pure Pt nanoparticles attached to carbon nanotubes has been investigated. Following homogeneous nucleation, nanoparticles attach directly to nonfunctionalized single-walled and multi-walled carbon nanotubes during nanoparticle synthesis as a function of ligand nature and the nanoparticle work functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015