Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.

نویسندگان

  • Xiu-Ling Wang
  • Hor-Gil Hur
  • Je Hyeon Lee
  • Ki Tae Kim
  • Su-Il Kim
چکیده

A newly isolated rod-shaped, gram-negative anaerobic bacterium from human feces, named Julong 732, was found to be capable of metabolizing the isoflavone dihydrodaidzein to S-equol under anaerobic conditions. The metabolite, equol, was identified by using electron impact ionization mass spectrometry, (1)H and (13)C nuclear magnetic resonance spectroscopy, and UV spectral analyses. However, strain Julong 732 was not able to produce equol from daidzein, and tetrahydrodaidzein and dehydroequol, which are most likely intermediates in the anaerobic metabolism of dihydrodaidzein, were not detected in bacterial culture medium containing dihydrodaidzein. Chiral stationary-phase high-performance liquid chromatography eluted only one metabolite, S-equol, which was produced from a bacterial culture containing a racemic mixture of dihydrodaidzein. Strain Julong 732 did not show racemase activity to transform R-equol to S-equol and vice versa. Its full 16S rRNA gene sequence (1,429 bp) had 92.8% similarity to that of Eggerthella hongkongenis HKU10. This is the first report of a single bacterium capable of converting a racemic mixture of dihydrodaidzein to enantiomeric pure S-equol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine.

The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly a...

متن کامل

Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine.

Isoflavones (mainly daidzein and genistin) belong to the flavonoid group of compounds and are classified as phytoestrogens. In the intestine, daidzin is converted to daidzein by beta-glucosidase, and then daidzein is converted to O-desmethylangolensin (O-DMA) or equol via dihydrodaidzein by enzymes of intestinal bacteria. We isolated, for the first time, an anaerobic gram-positive rod-shaped st...

متن کامل

Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers

Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on ...

متن کامل

Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol from daidzein in Lactococcus sp. strain 20-92.

Equol is metabolized from daidzein, a soy isoflavone, by the gut microflora. In this study, we identified a novel dihydrodaidzein racemase (L-DDRC) that is involved in equol biosynthesis in a lactic acid bacterium, Lactococcus sp. strain 20-92, and confirmed that histidine-tagged recombinant L-DDRC (L-DDRC-His) was able to convert both the (R)- and (S)-enantiomers of dihydrodaidzein to the race...

متن کامل

Isolation of a human intestinal bacterium capable of daidzein and genistein conversion.

A rod-shaped gram-positive anaerobic bacterium, strain HE8, was isolated from human feces. The isolate was able to convert the isoflavones daidzein and genistein to equol and 5-hydroxy-equol, respectively. Based on phenotypic and phylogenetic analyses, strain HE8 is described as a new species, Slackia isoflavoniconvertens.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 1  شماره 

صفحات  -

تاریخ انتشار 2005