Cardinal spline filters: Stability and convergence to the ideal sinc interpolator

نویسندگان

  • Akram Aldroubi
  • Michael Unser
  • Murray Eden
چکیده

In this paper, we provide an interpretation of polynomial spline interpolation as a continuous filtering process. We prove that the frequency responses of the cardinal spline filters converge to the ideal lowpass filter in all L f n o r m s with 1 ~<p < + ~ as the order of the spline tends to infinity. We provide estimates for the resolution errors and the interpolation errors of the various filters. We also derive an upper bound for the error associated with the reconstruction of bandlimited signals using polynomial splines. Zusammenfassung. In dieser Arbeit wird eine Interpretation der Polynom-Spline-Interpolation als kontinuierlicher FilterungsprozeB vorgestellt. Es wird bewiesen, dab die Frequenzg~inge yon Cardinal-Spline-Filtern in allen L fNormen mit 1 ~<p < oc gegen den idealen TiefpaB konvergieren, wenn die Ordnung der Splines gegen unendlich geht. Wir stellen Absch~itzungen fiir die Aufl6sungsfehler und Interpolationsfehler fiir verschiedene Filter vor. Es wird auBerdem eine obere Grenze fiir den Fehler im Zusammenhang mit der Rekonstruktion von bandbegrenzten Signalen mit Hilfe von Polynom-Splines hergeleitet. Resume. Dans cet article, nous proposons une interpretation de l ' interpolation B-spline en terme de filtres continus. Nous prouvons que les r6ponses fr6quentielles des filtres splines cardinaux convergent vers le filtre passe-bas id6al, et ceci dans toutes les normes Lp avec 1 ~<p < ~ , quand l 'ordre des splines tend vers rinfini. Nous donnons I'estimation des erreurs de r6solution et d' interpolation des differents filtres splines. Nous obtenons une limite superieure de l 'erreur associ6e & la reconstruction de signaux a bande limit6e par interpolation spline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sinc-Approximating Kernels of Classical Polynomial Interpolation

A classical approach to interpolation of sampled data is polynomial interpolation. However, from the sampling theorem it follows that the ideal approach to interpolation is to convolve the given samples with the sinc function. In this paper we study the properties of the sinc-approximating kernels that can be derived from the Lagrange central interpolation scheme. Both the finite-extent propert...

متن کامل

Wiener Filter as an Optimal MMSE Interpolator

The ideal sinc filter, ignoring the noise statistics, is often applied for generating an arbitrary sample of a bandlimited signal by using the uniformly sampled data. In this article, an optimal interpolator is proposed; it reaches a minimum mean square error (MMSE) at its output in the presence of noise. The resulting interpolator is thus a Wiener filter, and both the optimal infinite impulse ...

متن کامل

Fast and Accurate 3D Edge Detection for Surface Reconstruction

Although edge detection is a well investigated topic, 3D edge detectors mostly lack either accuracy or speed. We will show, how to build a highly accurate subvoxel edge detector, which is fast enough for practical applications. In contrast to other approaches we use a spline interpolation in order to have an efficient approximation of the theoretically ideal sinc interpolator. We give theoretic...

متن کامل

Digital filters associated with bivariate box spline wavelets

Battle-Lemarié’s wavelet has a nice generalization in a bivariate setting. This generalization is called bivariate box spline wavelets. The magnitude of the filters associated with the bivariate box spline wavelets is shown to converge to an ideal high-pass filter when the degree of the bivariate box spline functions increases to `. The passing and stopping bands of the ideal filter are depende...

متن کامل

Piecewise Polynomial Kernels for Image Interpolation: A Generalization of Cubic Convolution

A well-known approach to image interpolation is cubic convolution, in which the ideal sinc function is modelled by a finite extent kernel, which consists of piecewise third order polynomials. In this paper we show that the concept of cubic convolution can be generalized. We derive kernels of up to ninth order and compare them both mutually and to cardinal splines of corresponding orders. From s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 1992